Normal Approximation to Binomial Distributions

In a binomial distribution, n identical things (trials) occur. Each trial has 2 outcomes: yes or no. Each trial has the same probability of "yes" as the others.

Ex 1: You flip 20 coins. Each coin has the same probability of being a Head (0.50).
Ex 2: A team plays 162 games, with a probability of 0.59 of winning each game.
Ex 3: A bag of M \& Ms contains 500 Ms . Each M has the same probability of being red, 20%.

Fact: If a binomial distribution is large enough (), it becomes a Normal distribution, with

$$
\begin{aligned}
& \text { Mean } \mu=n p \\
& \text { Standard deviation } \sigma=\sqrt{n p(1-p)}
\end{aligned}
$$

Ex 2 A : What is the probability that the team will win at least 90 games?

Ex 2B: Now suppose the winning probability were 0.50 . What is the probability that the team will win at least 90 games?

Ex 3: What is the probability that the number of red Ms is between 95 and 120 , inclusive?

