1)a) $n p=109.2, n(1-p)=490.8$
b) $\mathrm{mu}=109.2$, sigma $=9.451$
c) 34.8% using normalcdf, 35.1% using binomcdf
d) 2.4% normalcdf and binompdf
e) 40.2% normalcdf, 40.7% binomcdf
2)a) $n p=71.05, n(1-p)=131.95$
b) $\mathrm{mu}=71.05$, sigma $=6.796$
c) $25.6 \% / 25.5 \%$
d) $69.4 \% / 69.6 \%$
e) $5.0 \% / 4.9 \%$
f) yes

Part 2
1a)
PP PS PR
SP SS SR
RP RS RR
b) $1 / 3$
c) $1 / 3$
d) $1 / 3$
e) $1 / 9$
f) $1 / 27$
g) $1 / 81$
h) $1 / 3+1 / 9+1 / 27+1 / 81+\ldots$
i) first term $=1 / 3$, ratio $=1 / 3$
j) sum $=1 / 2$. Yes, this makes sense. Each player has a 50% chance of winning.

2)

PP PS PR PL PSp
SP SS SR SL SSp
RP RS RR RL RSp
LP LS LR LL LSp
SpP SpS SpR SpL SpSp
b) $1 / 5$
c) $2 / 5$
d) $2 / 5$
e) $2 / 25$
f) $2 / 125$
g) $2 / 625$
h) $2 / 5+2 / 25+2 / 125+2 / 625+$...
i) first term $=2 / 5$, ratio $=1 / 5$
j) sum $=1 / 2$. Yes, this makes sense. Each player has a 50% chance of winning.

3a) 74.6%
b) 97.6%
c) It's better when more people use drugs.

