Conditional probability using counts instead of probabilities College students

Undergraduates at a 4-year university are classified by year (1st-year, 2nd, 3rd, 4th) and living status (on-campus and off-campus). See the table.

	1st-year	2nd-year	3rd-year	4th-year
On-campus	4253	2861	1727	585
Off-campus	934	1829	2487	3918

1) How many students live on campus? Off campus?
2) How many students are 1st-year? Second year? Third? Fourth?
3) How many undergraduates attend the school?
4) If a student is chosen at random, what is the probability that he/she is 2 nd year?
5) If a student is chosen at random, what is the probability that he/she lives off campus?
6) If a student who lives off campus is chosen at random, what is the probability that he/she is 2 nd year? What is the probability that he/she is not 2 nd year?
7) If a 2nd-year student is chosen at random, what is the probability that he/she lives off campus? What is the probability that he/she lives on campus?

Conditional probability: Dogs and Fleas

A: The household has dogs (at least one dog).
B: The household has fleas.

* Assume 60\% of households have dogs. Thus, 40% do not. $\mathrm{P}(\mathrm{A})=0.6, \mathrm{P}(\operatorname{not} \mathrm{A})=0.4$
* Of households with dogs, 70\% have fleas, and 30\% do not.
(Translation: The probability that a household has fleas, given that it has dogs, is 70%.) $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.7, \mathrm{P}(\operatorname{not} \mathrm{B} \mid \mathrm{A})=0.3$
* Of households without dogs, 25% have fleas, and 75% do not.
(The probability that a household has fleas, given that it has no dogs, is 25%.)
$\mathrm{P}(\mathrm{B} \mid \operatorname{not} \mathrm{A})=0.25, \mathrm{P}(\operatorname{not} \mathrm{B} \mid \operatorname{not} \mathrm{A})=0.75$

Q1: What percent of households have fleas?
$\mathrm{P}(\mathrm{B})=$
Q1A: What percent of households do not have fleas?
$\mathrm{P}(\operatorname{not} \mathrm{B})=$
Q2: Given that a household has fleas, what is the probability that it has dogs?
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$
Q2A: Given that a household has fleas, what is the probability that it has no dogs?
$\mathrm{P}(\operatorname{not} \mathrm{A} \mid \mathrm{B})=$
Q3: Given that a household does not have fleas, what is the probability that it has dogs? $\mathrm{P}(\mathrm{A} \mid \operatorname{not} \mathrm{B})$

Q3A: Given that a HH does not have fleas, what is the probability that it has no dogs?
$\mathrm{P}(\operatorname{not} \mathrm{A} \mid \operatorname{not} \mathrm{B})$

