Statistics 300 Quiz #14

Tue./Thu. 7:00-8:50 p.m.

Name:

Solution

(8 points: 15 minutes)

1. Do carpool lanes save commute time? Use the results of the experiment below to test the claim that using the carpool lane causes the average commute time to be at least 5 minutes less per trip. For the experiment, 6 randomly selected routes from the suburbs to downtown were selected. For each route, the time required was tested using the regular lanes and using the carpool lane.

The data are	given belov	v. Use a Ty	ype I error rate of 0.05 for the test. $\Rightarrow \angle = 0.05$
Route	Time fo	or Lane Carpool	Matched pairs, Use d= regular - carpool
1 2 3 4 5 6	50.3 28.2 19.9 24.7 60.1 58.2	46.6 28.2 18.5 16.3 55.7 57.3	Use calculators automatic $\{1,4\}$ functions to get $d=\overline{X}$ and $\{4,4\}$
x = s = n =	17.99	37.07 18.44 6	
			$6 = N$ $5 = df, \qquad \mu_R \ge \mu_C + 5$
Test Si	alistiz		Ho: (MR-Me) 3 5
ā-		=	$H_1: (M_R - M_c) < 5$ $A = 0.05 left tail$ $\mu_d = (\mu_R - \mu_c)$
(3-5		1.258
	(X=0.05

Statistics 300 Quiz #14

Tue./Thu. 7:00-8:50 p.m.

Nama

Solution

1.517 = Sd

d = Notwal - Synthetic

Put data in calculator and use automatic functions to get

(8 points; 12 minutes)

2. The data are from an experiment to compare the effect of natural vitamins to synthetic vitamins. Six patients participated in the test. Each patient used the natural vitamins for 6 months and the synthetic vitamins for 6 months. The data are measurements of "energy level."
Use the data to construct a 98% confidence interval for (μ1 - μ2), the difference in mean energy level that would occur if all people participated in the experiment.
Matched Paus

	Vitamin Treatment			
Patient	1 = Natural	2 = Synthetic		
1	8	6		
2	6	5		
3	6	5		
4	9	6		
5	7	8		
6	8	5		
Mean St. Dev. n	7.3 1.21 6	5.8 1.17 6		

confidence =
$$1-1$$

0.98 = $1-0.02$

$$x = 0.02$$

in 2 tails
 $t = 3.365$
 $5 df$

98% CI(
$$\mu_{a}$$
) = $\bar{d} \pm t_{a/2} \left(\frac{s_{d}}{I_{m}} \right)$
= 1.5 \pm 3.365 \left(\frac{1.517}{16} \right)
= 1.5 \pm 2.08
\[\begin{aligned} &-0.58 & < \mu_{a} < 3.58 \end{aligned} \]