Example Exam Questions
Unit #3; Page 1; Problem 1061
Glue Claims
$$\mu_{New} \ge \mu_{old} + 10$$

 $(or =)$
Ho: $(\mu_{New} - \mu_{old}) \ge 10$
 $H_{1}: (\mu_{New} - \mu_{old}) \ge 10$
 $H_{1}: (\mu_{New} - \mu_{old}) < 10$
 $\overline{A} = 0.10$ left tail
 $\overline{A} = 0.10$ left tail
 $\overline{A} = 0.10$ left \overline{A}
 $(\overline{X}_{New} - \overline{X}_{old}) - (\mu_{New} - \mu_{old})_{0}$
 $\overline{S}_{poil}^{2} + \frac{S_{poil}^{2}}{N_{old}}$
 $= \frac{(201.0 - (78.4) - 10}{\sqrt{\frac{95.2}{14} + \frac{95.2}{11}}}$
 $\overline{A} = \frac{(3.6)}{3.93} = (3.206)$
Note: "Variation is
 $about the same
for both glues."
So \vdots pool Uariancer
 $and add deg. glreeden.
 $S_{poil}^{2} = \frac{(13.6)}{(0.3)^{2} + 10(9.0)^{2}}$
 $= 2189.1(7/23 = 95.2)$
 $\overline{A} \cdot \overline{E} = 23$
 $eritical Pegion$
 $\overline{A} = 2.10$
 $\overline{A} \cdot \overline{E} = 23$
 $eritical Pegion$
 $\overline{A} = 2.10$
 $\overline{A} \cdot \overline{E} = 23$
 $\overline{A} \cdot \overline{A} \cdot \overline{A} + \frac{23}{12}$
 $\overline{A} \cdot \overline{A} - \frac{23}{12}$
 $\overline{A} - \frac{23}{12}$
 $\overline{A} - \frac{23}{12}$
 $\overline{A} - \frac{23}{12}$
 $\overline{A} - \frac{23}{12}$$$

Page 2 Problem lof 2 (8 points : 8 minutes Use the results of the experiment below to test whether the population correlation (ρ) is negative. If you cannot figure out how to get the sample correlation coefficient quickly, **use r = - 0.32.** (For this test, use $\alpha = 0.025$). correlation Hipso Experiment results: Sy= Total Variation : Sy(n-1) = Total n-1 (752)2/10) = Total regression line: (75.26) (23) = 130274 0,0 554.1 intercept = Se = Unvexplained : Se(n-2) = UNexplained slope = 63,87 Se = 24 n = $(63, 87)^2(22) = 89746$ Sy = d.f.= n-2 = 22 Explained = Total - unexplained= 40528 -0.558 Explained/total = 40528 = 0.311 test statistic: -(-,538)2 Negative 1r2 = 0.311 = (0.558) because Regim 0:0,025 -0.538 COR -3,154 A 2.074 Reject Ho: (8 points : 8 minutes) Proble 9. A company makes complicated laboratory equipment for analyzing chemical samples. To learn about the performance of their machines, the company works with 9 laboratories and gives to each four (4) identical sample of material to analyze, so a total of 36 measurements are taken. 9 X Y = 36 = NVariability in the outcomes of all 36 tests represents differences between laboratories (laboratory is considered the "treatment") and differences from test to test within the same laboratory ("error"). Complete the Analysis of Variance table below and carry out the appropriate hypothesis test to decide whether the expected (mean) results are the same for all 9 laboratories. k = q df (labs) = 8 (Use a significance level of 0.04 for this test.) Ho: M=M2 = ... = Ma x=0.04 Hi: Not Hi: or "at least one Analysis of Variance Table of the means = another " Sum of Degrees of Mean Squares Freedom F p-value Source Square p-value < d, 50 2.6077 377.6 B 47.2 0.0297 Laborator reject Ho: 488.7 27 184 Error 35 R 866.3 Total $F = \frac{MS(labs)}{MS(GMMr)} = \frac{47.2}{18.1} = 2.6077$ N= 36) df(total)=35 SS(1abs) = MS(labs) * df(1abs) = (47.2)(8) = 377.6 SS (Error) = SS (Total) - 53 (1abs) = 866.3-377.6 = 488.7 MS(Error) = SS(Error) / D.F. (Error) = 488.7/27 = 18.1

Example Exam Questions
UNIT #3; Page 3; Problem 192 Correlation
Put data in calculator:

$$r = 0.6711$$

 $n = 5$
 $d.f. = n-2 = (3)$
 $test Statistiz$
 $r = 0.6711$
 $test Statistiz$
 $r = 0.6711$
 $\frac{1-r^2}{n-2}$
 $\frac{1-(0.5711)^2}{5-2}$
 $= \frac{0.6711}{0.4280} = (1.568)$
Chim: correlation between
 $x and y is positive.
 $P > 0$
 $torrelation$
 $x and y is positive.
 $P > 0$
 $torrelation$
 $x and y is positive.
 $P > 0$
 $torrelation$
 $x and y is positive.
 $P > 0$
 $torrelation$
 $x and y is positive.
 $P > 0$
 $torrelation$
 $x and y is positive.
 $P > 0$
 $torrelation
 $x and y is positive.
 $P > 0$
 $torrelation$
 $x and y is positive.
 $P > 0$
 $torrelation
 $x and y is positive.
 $P > 0$
 $torrelation
 $x and y is positive.
 $P > 0$
 $d = 0.025$ $night toril
 $torrelation
 $torrelation$
 $torrelation
 $x and y is positive.
 $P > 0$
 $torrelation
 $x and y is positive.
 $P > 0$
 $torrelation
 $x and y is positive.
 $P > 0$
 $torrelation$
 $torrelation
 $x and y is positive.$
 $P > 0$
 $torrelation
 $torrelation$
 $torrelation
 $torrelation
 $torrelation$
 $torrelation
 $torrelation$
 $torrelation
 $torrelation
 $torrelation$
 $torrelation
 $torrelation
 $torrelation$
 $torrelation
 $torelation
 $torrelation
 $torrelation
 $torrelation
 $tor$$

Example Exam Problems Unif #3; Page 3; Problem 20/2 95% CI (4 - MOLD) Note: Problem talks about a "claim", but this is Not a hypothesis test. The problem requires a confidence interval, Not a test. Also, it says to answer "the question below", but I did Not copy that question. What about variation: "Experts advise so strength with old glue appears to be more variable than with the pewglue." So: Do vot pool variances. Do not add the d.f., but use the smaller of the two sample d.f. $\frac{957_{o}CT}{M_{New}} \left(\frac{M_{old}}{M_{old}} - \frac{M_{old}}{M_{old}} \right) = \left(\overline{\chi} - \overline{\chi}_{old} \right) \pm \frac{1}{2} \frac{S_{New}^{2}}{M_{New}} + \frac{S_{old}^{2}}{M_{old}} + \frac{S_{old}^{2}}$ smaller N = 8 _____d+__=(7)__ $= (215 - 198.4) + 2.365 (4.4)^{2} (9.3)^{2} \\ 8 \\ 15$ contidence = 0.95 X = 0.05 $\frac{\text{in } 2 \text{ fails}}{\frac{d}{2} = 0.025}$ in 1 fail $= 16.6 \pm (2.365)(2.861)$ t = 2.365 $= 16.6 \pm 6.77$ 9.83 < (MNew - Mold) < 23.37

Example Exam Problems Unit #3; Page (; Problem 1 of 2 Matched Pairs: Experimental UNIT = Patient diff (Tab-Lig) hypotheses. Tablet Liguid patient 2.2 2 0.7 3 3.4 Y 1-0-5-5 0,3 3.4 6 df = 5claim: $(\mu = \mu + 5)$ Tab μ_{Lig} M = 6d = 1.917Md = (M - Mig) $H_0: (\mu_T - \mu_R) = 5$ $S_{f} = 1.323$ H,: (M, - ML) 7 5 A or (4) dlz= 0.025 A= 0.025 x = 0.05 in 2 tails -2.57/ 2.571 2 0 5df. Test Statistic d - 1/2 $-\frac{3.083}{0.54} = -5.709$ 1.917 5-5 Sa/In 1.323/16 Reject Ho:

Example Exam Unit #3; Page	n Quest 24; Pro	ions blom 2	82	for	ntidence Interval - difference ween two proportions
Data:		98%CI((-PB-PA)	= (p -	\hat{p}_{A} + Z_{H_2} $\hat{p}_{A}\hat{q}_{A}$ + $\hat{p}_{B}\hat{g}_{B}$
t a a	Good	Bad	total	0.0	NA NB
Formula A	387	/3	400]	confidence = 0.98
Pormula B	354	46	400		d=1-confidence
A 13		A		-	= 1-0.98=0.02
$P_{A} = \frac{13}{400} =$	0,0325	8A	= 0.967	5	d/2 = 0.01
$\hat{\beta}_{B} = \frac{46}{600} =$	0,115		=0,885		$Z_{a_{12}} = 2.33$

98% $CI(p_B - P_A) = (0.115 - 0.0325)$ $\pm 2.33 \left(.0325 \right) (.9675) + (0.115)(0.585) + 400$ = 0,0825 ± (2.33 × 0,0182) = 0.0825 ± 0.0424 0.040 < (PB-PA) < 0.125 []

Example Exam Questions Contingency Unit #3; Page 5; 10/2 Table Daily Alcoholo-10 10-20 20-30 Atcheto Minutes Needed before Sleep total Daily Alcobol 117 269 96.33 249.3 114 500 154.3 Expected= pone (row tot) (col tot) 1 to 2 drives 90 6.33 240 170 249.3 500 154.3 Grand Total 82 33 239 96.33 20 179 500 3 or more 249.3 154.3 Total 463 289 748 1500 df =rows-(Xcols-() = (3-1)(3-1) Ho: Medication effectiveness is independent of alcohol use =(2)(2)=4A: dependent (Not Ho:) X=0.05 (Not stated) right fail (Obs-Exp)2 / 10.53 Exp 7 cells X=0.05 (0-E)/E 10.53 9.488 7/2 4d.f. Reject Ho:

points : 10 minutes)

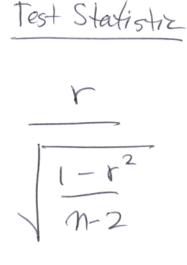
8. A company makes a sleep aid medication. They are concerned that alcohol use may interfere with the medications effectiveness, so that people who drink take longer to fall asleep. Use the data below to test whether the time needed to fall asleep after taking the medication is independent of a person's level of alcohol use.

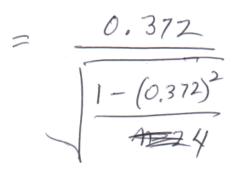
Amount of daily alcohol use	Minutes ner	eded befor 10-20	re sleep 20-30	Total	Solution on
none	117	269	114	500	(previous)
1 to 2 drinks	90	240	170	500	(previous)
3 or more drinks	82	239	179	500	
Total	289	748	463	1500	

(7 points : 10 minutes)

Page 5; Problem 2012 (GoodNess-of-Fi

10. A major news organization is interested in the public issues that registered voters think are most important. A stratified random sample of 320 registered voters is selected to represent the whole population of voters. Each voter is asked to select from a list of 8 issues the one that is most important. Compare the results to see if they are significantly different from the proportions expected by the news organization that carried out the study. (Let α be 0.05 for the test.)


1	Wi 2	anter maneral anteria	Но:		
7 14.067	X7d	.f.			
Issue		ortions) In Sample	r observed	COUNT	
Traffic		C	- Caser ven	Experia	(OBS-EXF
Congestion	10%	30%	96	32	Exp
Pollution	10%	5%	16	32	▶ 128 ▼ 8
Taxes	10%	25%	80	32 -	7 72
Deficits	10%	5%	16	32	8
Death Penalty	5%	5%	16	16	0
Iraq War	25%	20%	64	80	3.2
Education	10%	5%	16	32	8
Health Care	20%	5%	16	64	36
k = 8		N	1=320	50-	$\frac{(E)^2}{(26)}$


Example Exam Questions
Unit #3; Page **5**; Problem 1 g 2
Note: Problem says Variation is the same for both populations;
So @ pool the variances and @ add dyrees of free dom
Data:

$$\overline{X}_{A} = 111.7$$
 $\overline{X}_{B} = 103.5$
 $S_{A} = 26.2$ $S_{B} = 17.9$
 $\overline{M}_{A} = q$ $\overline{M}_{B} = 6$
 $af_{A} = 8$ $df_{B} = 5$
 $d.f. = 8 + s = (13)$
 $90\% CI (\mu_{A} - \mu_{B}) = (\overline{X}_{A} - \overline{X}_{B}) \pm t_{1/2} \frac{S_{pool}^{2}}{M_{A}} + \frac{S_{pool}^{2}}{M_{B}} = 612.6$
 $qo\% CI (\mu_{A} - \mu_{B}) = (\overline{X}_{A} - \overline{X}_{B}) \pm t_{1/2} \frac{S_{pool}^{2}}{M_{A}} + \frac{S_{pool}^{2}}{M_{B}} = 8.2 \pm (1.771) [612.6 + 612.6]$
 $= 8.2 \pm (1.771) (13.04)$
 $= 8.2 \pm 23.1$
Q: Is claim that $\mu_{B} = 102$ and $\mu_{A} = 1/3$ reasonable?

A: 9es, because (113-102) = 11, and 11 is in the CI(HA-ME) which is the "reasonable range" for HA-MB.

Example Exam Questions correlation kst Unif #3; Page 6; Publem 292 Put data for Net Worth and Happiness into Calculator. Get (r = 0.3721 Claim: correlation is positive n=6 p>0 $df_{1} = n - 2 = 4$ Ho: P = 0 t= 2.132 H;: p>0 d=0.05 right tail

Page 7; Problem 1g2

(8 points; 10 minutes)

5. Use the information in the contingency table to decide whether or not to reject the claim that Factor A and Factor B are independent. Let α = 0.05 for this test.

Expected	= (row to	tal (Col	total) Jan	and to tal	\mathbf{h}
Level o	f Lev	el of Fact	tor A	Row /	Claim: Factor A and Factor B
Factor	B 1	2	3	Total	are independent
1	54.7	79.7	65.7 66	200	Ho: A and Bave independent
2	54.4	19.7	65.7	200	
3	54.73	79.7	65.7	200	H1: A and Bave dependent
Colum Total	n 164	239	197	600	x = 0.05 df = (r-1)(c-1) = (4)
(Q-E)7E	0	107	0.21	Z	$\frac{(0-E)^2}{E}$ d=0.05 (bo hot) d=0.05 (bo hot) $e_ject H_{2j}$
an a	12.5	0.9	0.97	=(7.92 0 4 9.488 X

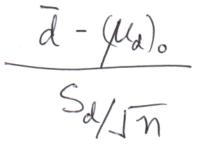
(10 points : 10 minutes)

10. A maker of tires for cars believes a new design will wear longer than the current design. Four of the new tires are prepared. Four cars are used in an experiment where one tire of the old design and one of the new design are used on the front wheels of each car. Use the data below to test the manufacturer's claim that the new design will increase the miles of wear by more than 500 miles. (Use a 0.10 significance level for the test.)

Car	Old Design	New Design	
1	58500	59100	in many second
2	60100	60700	solution m
3	58500	59200	5014 "
4	63400	63800	Separate page (Next)
	•	/	
		/	

Example Exam Questions Unit#3; Page 7; Problem 292

(New-old) New old car diff. Pesign Dosign l 58500 59100 600 2 60100 60700 600 3 59200 58500 700 4 63800 63400 400 $(\bar{x}) = d = 575$ 2=0,10 df= 3 $(S_{\rm X}) = S_{\rm d} = 125.8$ t= 1.638 $\gamma =$ 4 df = 3


Matched Pairs test of Mew Hold I matched because my 4 cars were used, and one of design time and one New design tive were used on

each car,

claim: Moren Hold + 200 (Moen - Mord) > 500 Ho: (MNew - Mold) 5500 H1: (MNew Hold) > 500 \$=0.10 right tail

2=0,10 = (1.192

Test Statistic

575 - 500 125.8/14 = 62.9

Goodness of Example Exam Questions Unit #3; Page 8; Problem 10/2 Fit Problem 0135 EXP It: all categories are equally most important (O-E) comts Issue Ê (00) H: Notso! Taxes 87 1.69 Educ 105 (00 0,25 d=0.025 ; right tail Security 96 100 0,16 108 Poventy 0,64 100 114 100 1,96 transp. 0,16 104 Environ. 100 1.69 87 Immig. (00 SocSec/Med 99 100 0.01 = 6.56 800 df -= 7 R=8 $Exp = \left(\frac{1}{8}\right)800 =$ X=0.025 6.013 Do Ho'.

Example Exam Problems
UNIT # 3; Page 8; Problem 2g 2
"Hi" = High value homes
"Lo" = Low value homes

$$P_{Hi} = 0.12 \quad \hat{g}_{Hi} = 0.88 \quad \text{M}_{Hi} = 50$$

 $\hat{P}_{Hi} = 0.12 \quad \hat{g}_{Hi} = 0.826 \quad \text{N}_{Lo} = 46$
 $\hat{P}_{Hi} = 0.174 \quad \hat{g}_{Lo} = 0.826 \quad \text{N}_{Lo} = 46$
 $\hat{P}_{Lo} = 0.174 \quad \hat{g}_{Lo} = 0.826 \quad \text{N}_{Lo} = 46$
 $F_{Hi} = 0.12 \quad \hat{g}_{Hi} = 0.826 \quad \text{N}_{Lo} = 46$
 $\hat{F}_{Hi} = 0.12 \quad \hat{g}_{Hi} = 0.826 \quad \text{N}_{Lo} = 46$
 $\hat{F}_{Hi} = 0.174 \quad \hat{g}_{Lo} = 0.826 \quad \text{N}_{Lo} = 46$
 $F_{Hi} = 0.174 \quad \hat{g}_{Lo} = 0.826 \quad \text{N}_{Lo} = 46$
 $F_{Hi} = 0.174 \quad \hat{g}_{Lo} = 0.0574 \quad \pm 1.96 \quad \frac{(12)(.88)}{50} \quad \pm (.174)(.826)}{50} \quad \pm (0.0724)$
 $= (-0.054) \quad \pm (0.142$
 $= [-0.196 \quad \angle (P_{Hi} - P_{Lo}) \leq 0.088$

Match graphs to possible correlations Example Exam Questions Unit #3; Page 9; Problems 1,2, #3

#8. Y = 0.070 Y = -0.85 Y = 0.00

#9. r= NONE r= 0.90 r= 1.00

#10. r= -0.70 r= NONE r= 0.90

Example Exam Questions correlation UNIT #3; Page 10; Problems 1 and 2. test claim: correlation is Put data in calculator to get: Negative r= -0.694 n=6 P<0 df = n-2 Ho: p≥0 = 4 H: p<0 +=-3.747 d=0.01 left tail lest Statistic -0.694 $\begin{bmatrix} 1 - r^2 \\ \eta - 2 \end{bmatrix}^2 = \boxed{ \begin{bmatrix} 1 - (-0.694)^2 \\ 1 - 2 \end{bmatrix}^2 }$ d= 0.01 gvill - 3.747 D 4 def $=\frac{-0.694}{0.360}=-1.928$ Do Not reject Ho? What if n was 28 Not 6, and and $\underline{t} = -2.479$ T was still - 0.694? $= \frac{-0.694}{1 - (-0.694)^2} = \frac{-0.694}{0.1412} = \frac{-4.915}{\text{Reject Ho}}$ 1-r2 7-2

0 points - 15 minutes)

Pagell; Problem 1061

3. The proportions of people in the U.S. that prefer 5 different kinds of entertainment are shown in the table below. A local survey of 600 people found 60 people who prefer movies, 300 who prefer to watch TV, 90 who like to listen to music, 30 who prefer dancing, and 120 that prefer to play sports. Test the claim that the true local proportions are the same as the national rates. (Use a 0.05 significance level for the test)

Good ness-of-Fit Claim: Lo cal proportions = National Proportions Ho: Local probortions = National Proportions H1: No they do Not : Not Ho; etc. Observed Local (Obs-Exp)/Exp Expected Preferred National Survey Entertainment Rates Count = (0.15)600 90 Watching Movies 0.15 60 210 = (0.35)600 38,57 Watching 300 Television 0.35 Listening to 15 60 90 Music 0.10 60 15 0.10 30 Dancing 180 Playing 20 120 Sports 0.30 600 Survey Total = $\sum \left| \frac{(0-E)^2}{E} \right| = (98.57)$ 5 categories R = 5 Test Statistic formula required d.f. = k-1=(4) The first cell in the table is enough to \$=0.05 reject to: 0 4 9,488 Reject

(10 points - 20 minutes)

(10 points - 20 minutes) Page 12 ; Problem 1061 4. Use the data in the table to test the idea that the use of some "slang" terms is independent of age. The data represent a stratified random sample of 400 people from Los Angeles. (Use $\alpha = 0.025$ for this test)

Confingency Table	ganor ar is san ang kalang kalang	1110 (120 (22)	Age C	Froup	mis i wit	ang sa
Controllericy race	Most used Slang Term	10 to 20	21 to 40	41 to 60	> 60	Total
Expected counts =	"l'm like "	37.5 88	37.5 50	37.5 10	37.5 2	150
(row total) (col. total)	"totally"	25 10	25 40	25 40	25 10	100
Expected counts are		37.5 2	37.5	37.5	37.5	150
Written in each cell.	Total	100			100	400

 $(0-E)^2$

14.449

X=0.025

Claim: <u>Slang used is independent of Age</u> Ho: Slang and Are are indep. H1: Dependent; Not Ho:; etc. L=0.025

(Obs. - Exp.) / Exp.

_					
	68.0	4.2	20.2	33.6	erten ande
	9.0	9.0	9.0	9.0	
	33.6	20.2	4.2	68.0	5
	2]=(.	2887		The Cell enou It I.	is one is big is big igh: ok top

Reject

to stol

df = (rows -1)(cols -1) = (3-1)(4-1) = (2)(3) = (6)

Confidence Interval Example Exam Questions for the difference Unit # 3; Page 13; Problem 1 of 2 between two proportions creamA [CreamB 98% CI (p-P_) = Less 38 51 $(\hat{P}_B - \hat{P}_A) \pm Z_{AL} = \frac{\hat{P}_A \hat{g}_A}{N_A} + \frac{\hat{P}_B \hat{g}_B}{N_B}$ Pain Not less 9 12 Pain =(0.85 -0.76) 50 60 TOTAL $\pm 2.33 \left[(.76)(.24)(.85)(.15) \\ -56 + 60 \right]$ $\hat{p}_{A} = \frac{38}{50}$ ₽_B=0,85 = 0.76 $\hat{g}_{B} = 0.15$ $\hat{q} = 0.24$ = 0,09 ± NB = 60 $N_A = 50$ (2.33)(0,07598) Contidence = 0,98 = 0.09 ± 0.177 x=0.02 = (-0,087< (p-P_)<0.267 d/2 = 0.01 Zd/2 = 2.33

Example Exam Problems Matched Page 13; Unit #3; Problem 20/2 Pairs Pain bevel Reported Using Cream A B diff Person B-A 2 5 - 1 6 2 2 3 4 2 5 5 0.2 = d 1.64 = 5d df = 4Claim: B is Better than A 5 = n [but "better" means less pain] $M_{\rm B} < \mu_{\rm A}$ 2= 0.05 Ho: MB-MA = 0 -2.132 H: (MB-MA) < 0 Do Not reject Ho: x=0.05 left tail Test statistiz d-pa = 0.2 - 0 0.2 0.273 1.64/15 Sd/In

(8 points; 8 minutes)

8 points; 8 minutes) Perfectly Problem 1 of 2 2. The popularity of TV shows is important to advertisers. A random sample of 1500 TV viewers in California was studied with the results shown below. Use these results to decide whether the popularity of the selected TV shows is the same in CA and NY Ho: CA props = NY props H: (1) 7 (1) or different.

(Use a Type I error rate of 0.01 to make your decision.)

Goodness - g - Fit

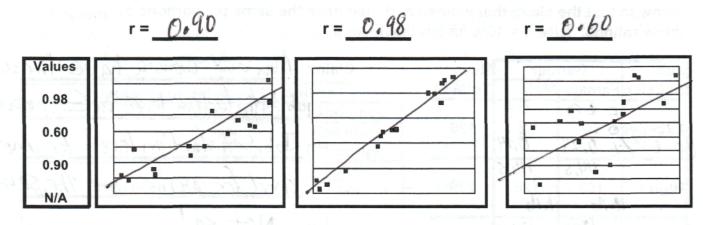
Popularity of	Selected TV S	hows		0.01	
	Monday 6 p.r	n. Audience		(O-E)	
Show	Share in NY	Viewers in CA sample	Expected	E	
Lost	31%	(OBS) 426	465	3.27	x=0:01
American Idol	26%	414	390	1.48	
Boston Legal	19%	333	285	8.08	0 3 11,345 X
Friends	24%	327	360	3.03	3d.
r = 4; d, f, = 3		N= 1500 .	$\sum \frac{(0-E)^2}{E}$	=======================================	86 R

(8 points; 8 minutes) Problem 207

3. The popularity of TV shows is important to advertisers. A random sample of 1600 TV viewers in California was studied with the results shown below. Use these results to decide whether the selected TV shows are equally popular.

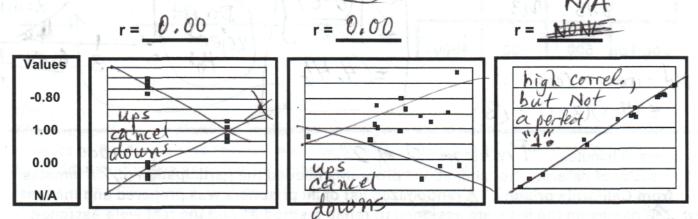
(Use a Type I error rate of 0.01 to make your decision.)

Ho: All four shows are equally popular Hi: Not all equally Expected (C-E) Popular Goodness - g-Fit (Popularity of Selected TV Shows Monday 6 p.m. Audience Show CA sample OBS. 400 - 0.64 Lost 416 400 0.49 American Idol 414 d=0.01 400 0.72 **Boston Legal** 383 400 0.42 11,345 2 0 Friends 387 N = 1600Po. k=4; df=3 \$ [Q-E] = 2.27

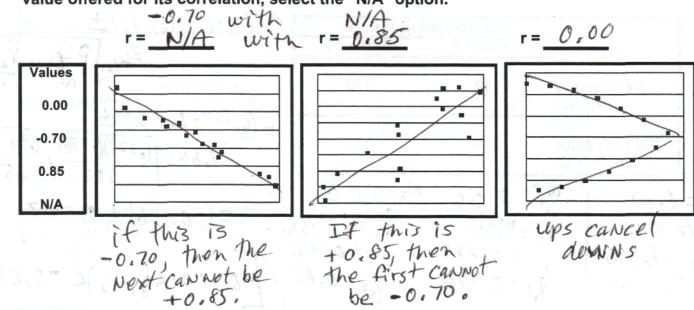

(8 points; 12 minutes) Page 15; Problem 1 of 2 4. Random samples of 500 women and 500 men were asked to evaluate their job satisfaction as "Excellent," "High," "Moderate," or "Low." Use the data below to test the claim that women and men have the same proportions of these ratings. (Use $\alpha = 10\%$ for this test.)

Job	Ger	nder	Row	Claim: Mar and women have these
Satisfac	Female	A DECISION OF THE OWNER OF	Total	
	F 68	68	No. of Concession, Name of Street, or other	job satisfaction levels in (=) proportions
Exceller	0 64	72	136	
$(0-E)^{2}$	E 0.24	0,24		Ho: Job Satisfaction levels for men
	114.5	114.5		
High	103 1.16	126 1.16	229	and for women are the same
Moderat	189,5 201 0.70	189.5 178 0.70	379	H1: <u>Not so</u> ?
Low	128 132 0.13	/28 124 Q.13	256	$\left[\begin{array}{c} \overline{\left(0-E\right)}^{2} \\ \overline{\left(0-E\right)}^{2}$
Col. Tot	500	500	1000	
(f= Gou	US - NCO	15-1)		= 4.46 Ho: 0 3 6.251 X 3 df.
			-	saf.
= (4-	-1)(2-1) = (3	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	
		P	1/	2-20
				2082 1000
A STUDY	or differ	ent "ren:	anilitati	
				on" programs needed the participation of 50% inmates
from Ca	lifornia p	orisons.	A rand	domized list of all prisoners was prepared and the first
from Ca 2,50 nam	lifornia p nes on th	orisons. ne list we	A rand ere assig	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned
from Ca 250 nam to rehat	lifornia p nes on th o method	orisons. ne list we l #2. The	A rand ere assig e rates d	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for
from Ca 250 nam to rehat another	lifornia p nes on th o method crime) v	orisons. ne list we l #2. The vere stud	A rand ere assig e rates d died. Us	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a 90% confidence
from Ca 250 nam to rehat another	lifornia p nes on th o method crime) v	orisons. ne list we l #2. The vere stud	A rand ere assig e rates d died. Us	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a 90% confidence en the recidivism rates for the two methods.
from Ca 250 nam to rehat another	lifornia p nes on th o method crime) v	orisons. ne list we I #2. The vere stud lifference	A rand ere assig e rates d died. Us e betwe	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> een the recidivism rates for the two methods.
from Ca 250 nam to rehat another	lifornia p nes on th o method crime) v	orisons. he list we I #2. The vere stud lifference Re	A rand ere assig e rates d died. Us e betwe ehabilita	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a 90% confidence een the recidivism rates for the two methods. proportions ation Method $CI(p, -p_2) = (\hat{p}_1 - \hat{p}_2) + \hat{p}_2$
from Ca 250 nam to rehat another	lifornia p nes on th o method crime) v	orisons. he list we I #2. The vere stud lifference Re	A rand ere assig e rates d died. Us e betwe	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a 90% confidence een the recidivism rates for the two methods. proportions ation Method $CT(p, -p_2) = (\hat{p}, -\hat{p}_2) + $
from Ca 250 nam to rehat another interval	urned to	orisons. he list we I #2. The vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a 90% confidence en the recidivism rates for the two methods. proportions ation Method Method 2 175
from Ca 250 nam to rehat another interval	lifornia p nes on th o method crime) v for the d	orisons. he list we I #2. The vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita hod 1	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> the recidivism rates for the two methods. <i>proportions</i> ation Method 175 $CI(p, -p_2) = (p_1 - p_2) + \frac{p_1 - p_2}{N_1} + \frac{p_2 - p_2}{N_2}$ $(p_1 - p_2 - p_1 - p_2) + \frac{p_1 - p_2}{N_1} + \frac{p_2 - p_2}{N_2}$
from Ca 250 nam to rehat another interval Ret	urned to	orisons. ne list we l #2. The vere stud lifference Re Meth 1 3	A rand ere assig e rates d died. Us e betwe ehabilita hod 1	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> the recidivism rates for the two methods. <i>proportions</i> ation Method 175 $CI(p, -p_2) = (p_1 - p_2) + p_2 + $
from Ca 250 nam to rehat another interval Ret Did no t	urned to Prison Prison	vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita hod 1 12 88	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> the recidivism rates for the two methods. Proportions ation Method 2 175 325 $N_2 = 5.0.0$ $CI(p, -p_2) = (p_1 - p_2) + \frac{p_1 + p_2 + p_2}{N_1 + N_2}$ $= (0.224 - 0.35) + \frac{p_2 + p_2 + p_2}{N_1 + N_2}$ $I.645 = (0.224)(0.776) + (0.35)(0.65) + \frac{p_2 + p_2}{500} + \frac{p_2 + p_2}{500}$
from Ca 250 nam to rehat another interval Ret Did no t	urned to Prison Prison	vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita hod 1 12 88	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> the recidivism rates for the two methods. Proportions ation Method 2 175 325 $N_2 = 5.0.0$ $CI(p, -p_2) = (p_1 - p_2) + \frac{p_1 + p_2 + p_2}{N_1 + N_2}$ $= (0.224 - 0.35) + \frac{p_2 + p_2 + p_2}{N_1 + N_2}$ $I.645 = (0.224)(0.776) + (0.35)(0.65) + \frac{p_2 + p_2}{500} + \frac{p_2 + p_2}{500}$
from Ca 250 nam to rehat another interval Ret Did no t	urned to Prison Prison	vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita hod 1 12 88	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> the recidivism rates for the two methods. Proportions ation Method 2 175 325 $N_2 = 5.0.0$ $CI(p, -p_2) = (p_1 - p_2) + \frac{p_1 + p_2 + p_2}{N_1 + N_2}$ $= (0.224 - 0.35) + \frac{p_2 + p_2 + p_2}{N_1 + N_2}$ $I.645 = (0.224)(0.776) + (0.35)(0.65) + \frac{p_2 + p_2}{500} + \frac{p_2 + p_2}{500}$
from Ca 250 nam to rehat another interval Ret Did no t	urned to Prison Prison	vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita hod 1 12 88	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> the recidivism rates for the two methods. Proportions ation Method 175 325 $N_2 = 500$ $P_2 = \frac{175}{500}$ $= (-0.126) \pm 0.047$
from Ca 250 nam to rehat another interval Ret Did no t	urned to Prison Prison	vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita hod 1 12 88	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> the recidivism rates for the two methods. Proportions ation Method 175 325 $N_2 = 500$ $P_2 = \frac{175}{500}$ $= (-0.126) \pm 0.047$
from Ca 250 nam to rehat another interval Ret Did no t	urned to Prison Prison	vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita hod 1 12 88	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> een the recidivism rates for the two methods. Proportions ation Method 2 175 325 $N_2 = 500$ $CI(p, -p_2) = (\hat{p}_1 - \hat{p}_2) + \frac{\hat{p}_1 + \hat{p}_2 + \hat{p}_2}{N_1} + \frac{\hat{p}_2 + \hat{p}_2}{N_2} + \frac{\hat{p}_2 + \hat{p}_2}{N_$
from Ca 2,50 nam to rehat another interval Ret Did no t	urned to Prison Prison	vere stud lifference Re Meth	A rand ere assig e rates d died. Us e betwe ehabilita hod 1 12 88	domized list of all prisoners was prepared and the first gned to rehab method #1 and the rest were assigned of recidivism (later conviction and return to prison for se the results below to make a <u>90% confidence</u> the recidivism rates for the two methods. Proportions ation Method 175 325 $N_2 = 500$ $P_2 = \frac{175}{500}$ $= (-0.126) \pm 0.047$

(3 points; 2 minutes)


Page 16; Problems 1, 2, and 3

11. Assign the three sample correlation coefficients to the three pictures. A correlation value may be used more than once or not at all. If a picture has no appropriate value offered for its correlation, select the "N/A" option.


(3 points; 2 minutes)

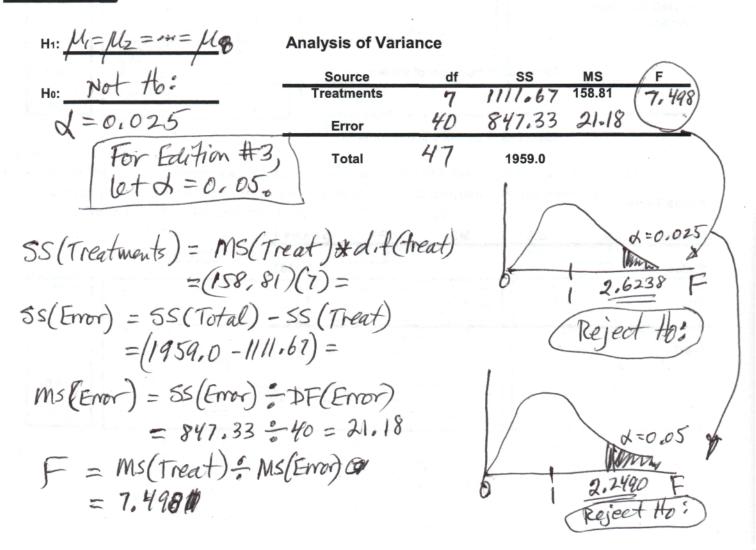
12. Assign the three sample correlation coefficients to the three pictures. A correlation value may be used more than once or not at all. If a picture has no appropriate value offered for its correlation, select the "N/A" option.

(3 points; 2 minutes)

13. Assign the three sample correlation coefficients to the three pictures. A correlation value may be used more than once or not at all. If a picture has no appropriate value offered for its correlation, select the "N/A" option.

A.O.V. Example Exam Problems MNif #3; Page 17; Problem 10/1 ANOVA Table sum of Mean d.f. Squares Square p-val Source 0.0183 13714112 3428528 3.2565 4 States Error 54 56852688 1052828 total 58 70566800 N = 59 $H_0: \mu_1 = \mu_2 = \dots = \mu_5$ Hi: (Pot Ho? 0.0182 <0.02 L= 0.02 p-value < a So reject Ho?

(10 points - 15 minutes)


Page 18; Problem log 1

5. The following data are "random" measurements of responses to eight different "treatments". An incomplete Analysis of Variance table is given. Use the data to complete the ANOVA table (but do not include a p-value). Then use the results in your your table to carry out the appropriate test of the claim that the true means of the eight populations are all equal. (Use $\alpha = 0.025$ for this test)

				Tre	eatment			
	A	В	C	D	E	F	G	H
	107	100	108	104	101	96	111	110
	104	98	95	101	100	97	104	117
	97	93	102	109	101	103	112	115
	100	95	99	98	106	99	110	109
	105		98	97	95	100	119	
	102	25 ⁶	96	89	2.5.5.2	105	132,324	
	101		96	103	33 8 B - M	108	982,24	
	96					97	122122	
			Samp	le Statistic	s for each	Treatment		
Mean	101.5	96.5	99.1	100.1	100.6	100.6	111.2	112.8
d. Dev.	3.82	3.11	4.56	6.34	3.91	4.31	5.36	3.86
N	8	4	7	7	5	8	5	4

N= 48

Overall Mean = 102.25

Page 19; Problem 19/ 295 (6 points; 7 minutes) Linear Relationship Between Temperatures 2. Based on the data given below, 29000 do parts (a) through (d). X Temperature (°K) at 5000 feet Surface Observation 280 The state 1 296 304 0 275 20 2 277 294 3 275 287 270 200 4 288 304 5 276 286 6 265 287 6 267 (Y) (X) 210 676 23 297 302 280 285 290 295 300 (a) Plot the data points on the graph. 31 305 (b) Enter data in calculator and write the 43.36 equation for the best-fitting line: x = 280 y= 265) (x=300 y= 287) (c) Plot the line on the graph. (d) Predict the temperature at 5000 feet when the surface temperature is 280 °K?. (e) What is the proportion of the variability in Y that is "explained" by 0,8122 the temperature at the surface? (b) The expression for the total variability in Y is: = Sy (n-1) (c) The value of the total variability in Y is: (d) The expression for the explained variability in Y is: =(F²)(Total) 437.65 (e) The value of the explained variability in Y is: - ý)2-(f) The expression for the unexplained variability in Y is: = Total 101.15 (g) The value of the unexplained variability in Y is: (h) The expression for the Standard Error of Estimate is: 5.03 (i) The value of the Standard Error of Estimate is:

(15 points : 15 minutes)

2. Use the data below to answer the questions on this page.

Number of Pools as a Function of Temperature Swimming Annual **Pools Per** High Temp. 450 **Community 1000 Homes** (°C) 37 2 seudo Hou 1 380 45 2 430 45 8 8350 3 199 29 4 331 36 per 5 224 33 6 260 30 buiuus 50 (a) Plot the points on the graph. Plot the line 200 30 28 32 34 36 38 42 44 48 40 46 **Annual High Temperature** (b) Determine the equation of the line that fits the data best and plot it: slope = 11,97 equation: -131 +11.971 intercept = -13 407.8 = (-131) + 11.97 (45) (c) For a new community, what is the estimated number of swimming pools per 1000 homes if the annual high temperature is 45 °C? 0.936 (d) What is the value of the linear correlation coefficient for the two variables? (e) What percentage of the total variation in number of pools is explained by your line? $\frac{87.7\%}{1000}$ $r^{2} = 0.877 =$ (f) Write the symbolic expressions and give the values for the three items below: Total variation in **Explained variation Unexplained variation** number of pools in number of pools in number of pools Symbolic expression \geq value $\frac{41/42}{S_{y}^{2}(n-1)}$ 36601 total - explained (g) Write the symbolic expression and give the value for the standard error of estimate: Symbolic Sea 35.85 Nexplained M-2