Name: <u>Solution</u>

(10 points; 10 minutes)

1. The data below are for 589 randomly selected people with autism. Use the data to make a 92% confidence interval for the difference between the proportion that had health insurance in the "<1" age group and the proportion that had health insurance in the ">4" age group. Then answer the question at the bottom of the page.

the question at the bottom of the page.	7, 174924 1	Va GAL		
926 CI ($\vec{p}_{+4} - \vec{p}_{<1}$) = ($\hat{\vec{p}}_{>4} - \hat{\vec{p}}_{<1}$) ±	hapet - May T	Mel		
140 - (74 121) (174 121)	Age in Years			(N)
	autom	i i anny naa no	alth Insurance	(N) (53)
A 22 AKIS	diagnosed	Yes	No	(53)
P = = = 0,113	(1)	22	31	
A 50 mc	1	34	33	1 · · ·
$\hat{P}_{1} = \frac{22}{53} = 0.415$ $\hat{Q}_{21} = 0.585$	2	47	46	
	3	60	57	
EA 68 A 521	4	67	64	
$\beta_{3} = \frac{68}{128} = 0.531$	>4	68	60	128
1>4 28	Acm	idence = 0.92	x= 0.08 xh	-0.04
8-4=0.469			1 05	2010 (
674	Z,=	1.75		-
UT	W2	1.75 -1.7	0401	
	1112 - 1 - 1		1 1110 1 - 00	
92% CI(P, - P~) = (0.531 - 0	.413) I (075)	6.531)(.469	(0415)(0585)	
()>4 (x) - (128	52	
			2	
$= \frac{11.6}{4.062} \pm (1.75)(0.08)$				
- AAG + (1.75) (0.08	308)			
	-		7	
= = ±,1414 = -	A ATC / 1	(n-p)/d	9-9034	
	Court -	Jy KI) > C	72024	
11.0	-0.0257	0	25/1-	

Based on your confidence interval, is it reasonable to claim that the proportion that had health insurance in the "<1" population is greater than the proportion that had health insurance in the ">4" population?

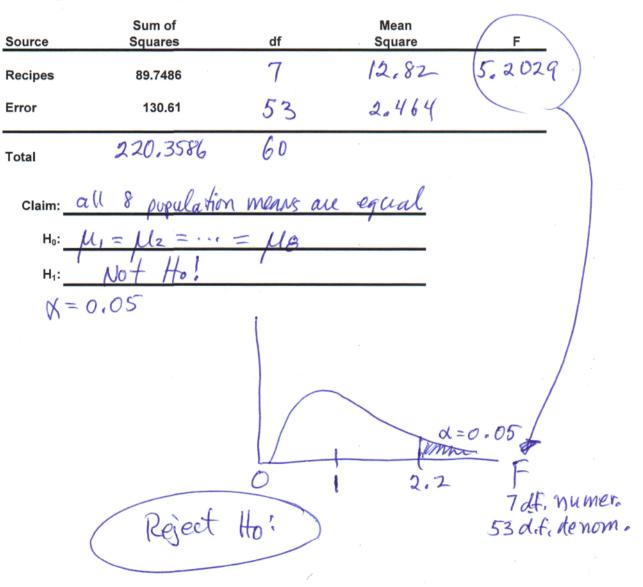
Values are Nega Why? No Yes Rzy - Pai in the CI for (B24-P2,) will be negative. if (ki > By) then

DO PROBLEM 2 OR PROBLEM 4 ON THE NEXT PAGE.

(9 points; 9 minutes)

2. Use the data below to test the claim that "the higher the wind speed the cooler the temperature." That is, test whether the data imply a negative population correlation between temperature and wind speed. (Use a 0.025 significance level for this test.)

		Wind		Claim: 📿 < 0
	Day	Speed	Temperature	H_0 : $D \ge 0$
	1 2	6	87 96	$H_1: \rho < 0$
	3 4 5 6	6 8 3 19	87 92 98 79	L=0.025 left tail
	* In 1000's	s of dollars		Critical regeon
-	r = N =	-0.8	22	
ø	df	=6-2 - Stati	=4 stic	0.025 mill 4-2.776 0 t 4 dif.
		- r ² 7-2		$\frac{822}{-(-0.822)^2} = \frac{-0.822}{0.2847} = -2.887$ 6-2 Reject Ho:
	oints; 2 minu (a) What v		ne center <u>(</u> mean) of the standard normal (Z) distribution?
	(b) What	value is at t	he center (mean) of the "t" distribution with 12 d.f.?
	(c) What	value is at t	ne center (mean) of the"chi-square" distribution with 12 d.f.?
			he center (mean and 12 denomin) of the "F" distribution with ator d.f.?


DO PROBLEM 4 OR PROBLEM 2 ON THE PREVIOUS PAGE.

(9 points; 8 minutes)

4. The General Mills company is experimenting with different amounts of flour, sugar, salt, and shortening for a new cake mix. Their expert cooks have eight different experimental recipes. The cooks use these recipes to make a total of 61 cakes. After baking, the "firmness" of each cake is measured. Use the information to complete the Table and test the claim that the populations of all cakes made with each of the 8 recipes have the same average firmness. (Use $\alpha = 0.05$.)

			Firmness	of Cakes	Made with	Recipe #		
_	1 -	2	3	4	5	6	7	8
Mean = St.Dev. =								
n =	12	10	6	8	6	7	5	7

Complete the Analysis of Variance Table and test the claim.

(9 points; 10 minutes)

5. A study compared the average performance of "A" students at Community Colleges (CC) on a standardized test to the average performance of "A" students at University of California (UC) cumpuses on the same test. Test the claim of UC supporters that the population of UC "A" students average at least 5 points higher compared to the population of CC "A" students. (Use $\alpha = 0.05$, and assume that variability in test scores of students at CC and UC is the same.)

Solution

lec +5 Scores of "A" Students Claim: Muc. CC UC H₀: Muc- $\overline{\mathbf{x}} =$ 168 170 s = 14 12 17 13 n = 16+ =28 12 $S_{pool}^{2} = \frac{(M_{cc}-1)S_{cc}^{2} + (M_{uc}-1)S_{uc}^{2}}{(M_{cc}-1) + (M_{uc}-1)}$ $= (16)(14)^2 + (12)(12)^2$ 16 + 1228 d.f. ,701 D 173.7 est Statisti $= \frac{(170 - 168) - 5}{\left[\frac{173.7}{12} + \frac{173.7}{17}\right]} = \frac{-3}{4.856}$ (Mue - Mac)o The - Tec) -0.618 + Sport/n (3 points; 3 minutes) 6. Answer questions (a) through (c): p-val > X (a) A contingency table (5 rows, 3 columns) is tested for independence. If Alpha = 0.05 and P-value = 0.17, what do you conclude? Reject or Do not reject? If Alpha = 0.025 and P-value = 0.017, what do you conclude? Reject or Do not reject? p - val < d(b) A correlation coefficient (23 $\{x,y\}$ pairs) is tested: H0: r > 0. P (c) What percentile did the test statistic in part (a) represent? Test statistic = It may help to draw a critical region picture that includes the p-value. test, » -value is what fail. o 0.83

Name: Solution

(14 points, 18 minutes)

1. Use the "distance" data to complete questions 'a' through 'm'.

Adat	etic Perform	manco					
Auli				(\mathbf{Y})			
Athlete	Time for Mile	Distance Javelin					
1	4.3	60.3		ui 52.4 62.0 61.6 61.2 61.2 60.8 60.8			
2	4.8	62.4		No	1 1	1	
3	4.7	61.7		<u>ب</u> 61.2			
4	4.9	61.4		9 60.8			1
5	4.8	62.5		o.oo		1	
.	4.0			ä 60.4			<u>++</u>
	(X)			60.0	* *		
	C	<u> </u>			.2 4.3	4.4 4	1.5 4.6 4.7 4.8 4.9 5.0
(a) Plot th	e data on t	the graph.			4.5		ime to run a mile
(b) Write	he equatio	on of the reg	ression "be	L	1	-	47.8 + 2,95 (X)
		-		stilt line.	- 4		
		" line on the	• •				
(c) Predic	t "Javelin I	Distance" if 47.8	"Time for N	Aile" is 4.5 .	Y (4.5))	61.07
(d) What i	s the samp	ole correlatio	on between	mile time a	nd Javelin	distar	
(e) What f	raction of	the variation	distance	' does ''mile	e time" exp	lain?	r = 0.6054
		ye, or					-12
(f) What is	s the expre	ession for the	e "total var	iation in Y"	?		$\geq (y-y)$
(g) What i	s the value	e of the "tota	I variation	in Y"?			3.172
							= 14 - 2
(h) What i	s the expre	ession for th	e "explaine	ed variation	in Y"?		Z(y-y)
(i) What is	s the value	of the "expl	ained varia	tion in V"2		1.	9203
(i) What is	sine value				<u> </u>	10	
		1	$r^2(tor$	tal)			- 1. 2.2
(i) Mhat is	the owner				n in V"2		5(4-4)
() what is	s the expre	ssion for the	e unexpiai		$\frac{1}{10}d =$		
(j) What is the expression for the "unexplained variation in Y"? total = exp(ai)Ned = (k) What is the value of the "unexplained variation in Y"? 1.2517							
							5/4-812
(I) What is the expression for the "Standard Error of Estimate"? $\int \frac{S_e}{M-2} = \frac{2(9-9)}{M-2}$							
(m) What is the value of the "Standard Error of Estimate"?							
		5	$(1-\hat{y})^2$	۲ ۲			
		Δ'	IF Z				

Summer 2011 M/Tu/W/Th 5:3-8:15 pm

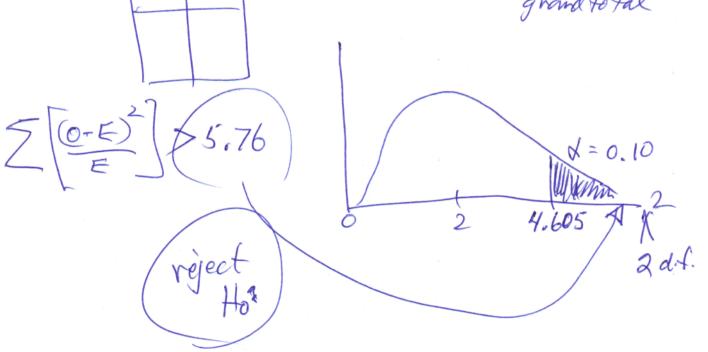
(9 points; 10 minutes)

satisfaction as "Excellent," "High," "Moderate," or "Low." Use the data below to test the claim that women and men choose different sizes of the same proportions. (Use $\alpha = 10\%$ for this test.) 7. A thousand randomly selected adults were asked to evaluate their job-

2.88) + total = 5.76

Size of	Gen	der	Row	
Automobile	Female	Total		
Large	62 50	38	100	
Medium	57 56.5	56 56-5	113	
Small	81 43.5	106	187	
Col. Total	200	200	400	

(O-E)/E


2,88

men and women choose sizes of cars in defferent properties Claim:

Men and women choose H₀: sizes of cars in the same props.

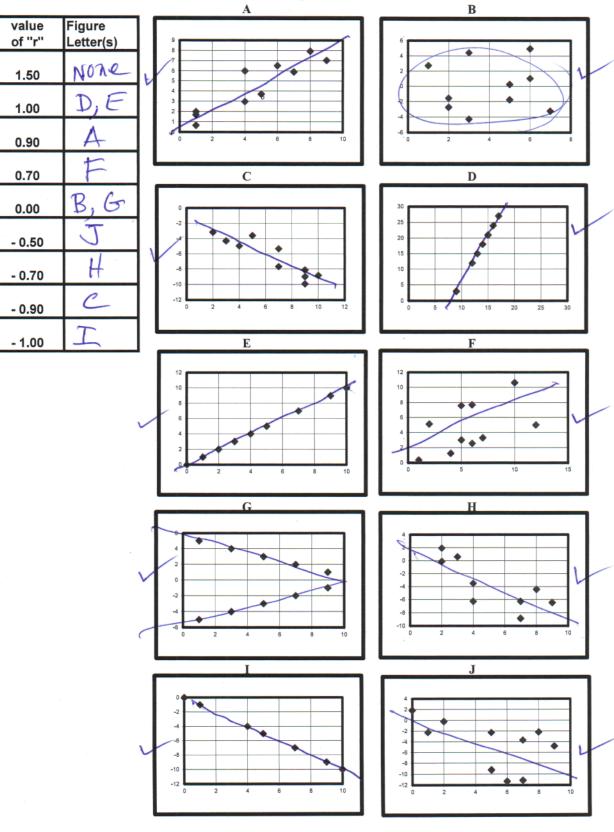
men & women choose sizes **H**₁: of cars in different propertion X = 0.10 right tail df = (r-1)(c-1)= (3-1)(2-1)=(2)(1)=(2)

Expected counts = (row total) (column total) grand to tal

(8 points; 8 minutes)

8. The ethnicity and gender of a random sample of 1000 CRC students is to be compared to the percentages of these categories in the Area from which CRC draws students. Test the claim the CRC student body does not match the proportions in the surrounding area. (Use a Type I error rate of 0.05 to make your decision.)

Name:


Data on Ethnici Monday 6 p.r	-		(% *1000)
Ethnicity / Gender	CRC Sample	CRC Area	Expected (O-E)/E
Pale Males	300	28%	280 1.43
Pale Females	330	29%	290 5.52
Non-Pale Males	80	20%	200 72.00 enough
Non-Pale Females	290	23%	230 (15.65) enough
Total =	1000	100%	$\Sigma = 94.6$

$$\sum \left[\underbrace{(0-E)^{2}}_{E} \right] = \frac{94.6}{3} \qquad d = 0.05$$

$$\lim_{X \to 0} \frac{1}{3} = \frac{7.815}{1.815} \xrightarrow{X}_{3} \frac{1}{4.5}$$
Reject
$$H_{0}$$

(10 points; 6 minutes)

10. Assign the letters of the appropriate figures to each of the "sample correlation" values offered below. If an "r" value has no appropriate figure, write "none" next to it.

Solutio

= 400

(9 points; 9 minutes)

11. Some people think there should be laws that say children cannot bring the lunch to school from home because schools know better than parents how to feed the kids. A random selection of lunches from the schools compared to lunches from homes. Use the data below to prepare a 98% confidence interval for the difference in average calories for the populations of all lunches preovided by schools and all lunches provided by parents. There is good reason to believe that lunches from homes are more variable than are lunches from schools.

Name:

				o use smaller dif.
	Data on Ca	lories in L	unches	
		From Homes	From Schools	$98\% CI(\mu_{5} - \mu_{H}) =$
	<u>x</u> =	1285	1334	$(\bar{\chi}_s - \bar{\chi}_{\mu}) \pm t \left[\frac{S_s^2}{N_s} + \frac{S_{\mu}^2}{N_{\mu}} \right]$
	S =	146	112	I Is M#
	n =	25	16	=(1234 - 1285)
		24		$= (1334 - 1285) + (112)^{2} + (146)^{2}$ $\pm 2.602 + (146)^{2} + (146)^{2}$
C	ontide			
	Z		0.0: m 2 to	
			2.6	
		[-	56.4	$(<(\mu_{s}-\mu_{H}) \ge 154.4]$

Based on your confidence interval, is it reasonable to claim that the average calories in all lunches provided by schools is 400 more than the average calories in all lunches that kids bring from home?

Whv?

If $\mu_{s} = \mu_{H} + 400$ then $(\mu_{s} - \mu_{H}) = [400]$

Differences

are Not in

he

Yes

No

DO THIS PROBLEM OR PROBLEM 13

(10 points; 10 minutes)

12. Use the data below for two randomly selected samples to test this claim: "Cars that run on just gasoline have the same relative frequency of major engine repairs when compared to cars that run on gasoline plus the additive called GoMore." DO NOT DO THIS PROBLEM AS A CONTINGENCY TABLE! (Let $\alpha = 0.02$ for this test.)

Car needed major engine repairs	G Just Gasoline	Gasotine + GoMore	$\begin{array}{c} \text{claims} P_6 = P_{6M} \\ (P_6 - P_{6M}) = 0 \end{array}$
No	75	42	a c
Yes	8	8	Need
Sample Size	83	50	P78
Ŷ	6 = 8/83 = 0.09	64 \$ 6m = 0 50	= 0.1600 p= all "successes" all trials

shotion

proportion, %

Claim:	
H₀:	(p - p) = 0
H₁:	(p-p)=0
	Do UGM
C 	X = 0.02 m 2 tails

$$d/2 = 0.01$$

 -2.33 0 2.33 Z

 $=\frac{8+8}{83+50}$

= 0.1203

$$= \frac{(.0964 - .1600) - 0}{(.1203)(.8797)} + \frac{1203}{53} +$$

Summer 2011 M/Tu/W/Th 5:3-8:15 pm

matched

DO THIS PROBLEM OR PROBLEM 12

(10 points; 10 minutes)

13. An advertisement says "add GoMore to your gasoline and get at least 2 miles per gallon more than you would get with just gasoline." Use the data from a small test below to test whether the advertised claim is true on average. (Use a Type I error probability or 0.025.)

Name:

Mg+2 LGM diff Claim: Experimental miles per gallon Unit Gas + Just GM-G llem-MG) H₀: (car/driver) Gas GoMore 3.6 UGM NG H₁: 1 26.1 29.7 3.7 2 31.2 34.9 left fail =0,025 3 29.1 32.5 4 31.8 31.7 -0-5 32.9 35.1 6 24.7 26.8 2. 2 2.1 = 2.483 = 1.447 0.02 : 6 df = 52,571 0 5df Test statistic $\overline{d} - \mu_d = \frac{2.483 - 2}{1.447/15}$ $\frac{2}{1} = \frac{0.483}{0.591} = 0.817$ $\frac{2}{10} = 0.817$ $\frac{1}{10} = 0.817$