1. (4 points; 5 minutes)

Identify the sampling approach in each situation below as SIMPLE RANDOM, STRATIFIED RANDOM, SYSTEMATIC, CLUSTER, CONVENIENCE, or CENSUS sampling.
(a) Radio stars earn large salaries. Their earning power, however, depends on the age groups that like to listen to them. Therefore, a marketing company separates the whole population into several age groups and takes a random sample of 1000 people in each age group to study which radio stars are worth the most money.

(b) A manufacturer of radios wants to start a testing program to improve quality. Over the 52 weeks in each year, radios will be sampled from the production line on Tuesdays and Thursdays of even-numbered weeks at the end of each hour that the production line operates.

(c) People searching for evidence of extra-terrestrial life scan space for non-random patterns of radio waves. People with home computers participate in a massive network to provide the power needed to examine the data. To get a sample of people to participate, the program leaders place ads in science fiction magazines and computer magazines. An 800 number is listed so people can volunteer for the program.

(d) An auditor must review 15% of 8,955 case files in 180 file drawers. A list of the 8955 cases is prepared and rearranged at random. The first 15% of the cases in the rearranged list are reviewed to see $\phi /$ they were handled correctly.
\qquad
2. (4 points; 5 minutes)
population with a
The sample of 170 values below comes from a distribution that is shaped like a bell. First, estimate the standard deviation of the distribution, then estimate the lower and upper values that should include about 99.7% of the values. You may use the "sample statistics" provided in any way you like. Show or describe how you found your answers. Remember, only 4 minutes.

Name: \qquad
3. (13 points; 15 minutes)

Answer parts a, b, c, and d assuming you know the following things about all of the adults in the United States of America:
32% of all women are college graduates
17\% are both women and college graduates
12% are both men and college graduates

$$
\begin{array}{ll}
==\Rightarrow & P(G \mid W)=0.32 \\
==\Rightarrow & P(G \text { and } W)=0.17 \\
==\Rightarrow & P(G \text { and } M)=0.12
\end{array}
$$

(4 points)
(a) What is the probability that a randomly selected adult American will be a woman?

$$
P(G \mid W)=\frac{P(G \text { and } w)}{P(w)}=\frac{0.17}{0.32}=0.531
$$

(2 points)

$$
0.32=\frac{0.17}{P(w)}
$$

(b) What is the probability that a randomly selected adult American will be a man?

$$
P(M)=1-P(W)=1-0.531=0.469
$$

(4 points)
(c) What is the probability that a randomly selected adult American will be both a man and a college graduate?

$$
P(\text { Gand } M)=0.12 \text { given in problem }
$$

(3 points)
(d) Is college graduation in the USA independent of gender, and how did you decide on your answer?

$$
\begin{aligned}
& P(G / M)= \frac{P(G \text { and } M)}{P(M)}=\frac{0.12}{0.469}=0.256 \\
& \text { But }
\end{aligned}
$$

4. Use the $\mathbf{1 7 0}$ values below (in sorted order) to answer parts (a) and (b).
(4 points; 3 minutes)
(a) What is the value of the $83^{\text {rd }}$ percentile, P_{83} ? $\quad k=83$; what is the data value?

$$
\begin{aligned}
L=\left(\frac{k}{(000}\right) N & =\left(\frac{83}{100}\right) 170=141.1 \text { \& } 142 \text { location } \\
P_{83} & =239
\end{aligned}
$$

(4 points; 3 minutes)
(b) What percentile corresponds to the value $\mathbf{2 2 6}$?

Data value $=226$; what is k ?

5. (5 points; 5 minutes)

A small ferry boat carries people and cars across a river. The boat can carry 10 people and 2 cars. Five cars are waiting to cross the river -- 2 Red (R), 2 Green (G), and one Blue (B). The car owners all claim to have arrived at the same time, so the ferry boat operator decides to pick one car at random and then another car at random to get on the boat.
(a) List the sample space for the cars using the boat operators' procedure (e.g. $\left\{\mathbf{G}_{2}, \mathbf{G}_{1}\right\}$)

(b) Because the ferry operator picks at random, what is the probability he will pick at least one of the Red cars?

The circled events have at least one red car.
14 circled events
P(at cast one wed)

6. (6 points; 6minutes)

Given:
X is distributed Binomial where $n=2000$ and $p=0.72$
Y is distributed Binomial where $n=800, p=0.44$
Which would be more unusual, $X=1392$ or $Y=378$?

$$
\begin{aligned}
& \mu_{x}=(2000)(0.72)=1440 \\
& \sigma_{x}=\sqrt{2000(.72)(.28)}=20.08
\end{aligned}
$$

$$
\begin{array}{ll}
Z_{X}=\frac{1392-1440}{20.08}=-2.39 & \begin{array}{l}
\mu_{y}=800(0.44)=352 \\
\sigma_{y}=\sqrt{800}(0.44)(0.56) \\
\hline
\end{array} \\
Z_{Y}=\frac{378-352}{14.04}=1.85
\end{array}
$$

7. (7 points; 7 minutes)

Complete the columns in the "Frequency Distribution" table using the data values given below.

Frequency Distribution

Class Limits				Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
0.00	0.04	X / X	5	$5 / 11$	5	$5 / 11$
0.05	0.09	$1 / 1$	3	$3 / 11$	8	$8 / 1 c$
0.10	0.14	$1 / /$	3	$3 / 11$	11	$11 / 11$

Class Boundary	Class Midpoint
0.045	0.02
0.095	0.07
	0.12

	$n=1 l$		
Data:			
0.073	0.038	0.043	0.032
0.066	0.044	0.138	0.054

8. (8 points; 7 minutes)

For the two situations below, determine whether each is a proper (valid) discrete probability distribution. If it is a proper distribution, determine the mean, variance, and standard deviation.

(b)

x	$\mathrm{P}(\mathrm{x})$			
17	0.66			
60	0.15			
81	0.09			
$\sum \pm 0_{0} 9$				
\sum				

"Not valid i"

μ	σ^{2}		σ
	formula		
formula	value	formula	
value		value	

9. (14 points; 14 minutes)

For the data in this problem, provide a definition for each sample statistic, then calculate the value of each statistic for sample of data listed in the problem. Use your calculator's statistical functions where possible; "by hand" is not acceptable for the mean and the standard deviation.

Definition or Formula

Value for these data

10. (4 points: 5 minutes)

A business analyst determines that a new store will earn $\$ 100,000$ in profits if it is the only store in the area. But, it will only earn $\$ 60,000$ if another store opens, and it will lose $\$ 20,000$ of two more stores open. The probability that the new store will be the only store is 55%. The probability that only one other store will open is 35%. And, the probability that two other stores will open is 10%.

$$
\text { Expected Value }=\sum x \cdot P(x)
$$

What is the expected value of a decision to open the store?

11. (8 points; 5 minutes)

Circle the correct choice in each box based on the underlined text in each part.

Are the data ... ?
Are the data ...?
a. A dog, a cat. and a bird compete in three races - a short one, a medium one, and a long one. The amount of energy used by each animal in each race is measured. The bird won 2 races, the dog 1 , and the cat 0 .

b. A dog, a cat, and a bird compete in three races - a short one, a medium one, and a long one. The amount of energy used by each animal in each race is measured. The bird won 2 races, the dog 1 , and the cat 0 .

c. A dog, a cat, and a bird compete in three races - a short one, a medium one, and a long one. The amount of energy used by each animal in each race is measured. The bird won 2 races, the $\operatorname{dog} 1$, and the cat 0 .

d. A dog, a cat, and a bird compete in three races - a short one, a medium one, and a long one. The amount of energy used by each animal in each race is measured. The bird won 2 races, the dog 1 , and the cat 0 .

12. (3 points: 3 minutes)

A store sells five different types of home appliances - refrigerators (R), washing machines (W), dryers (D), stoves (S), and automatic dishwashers (A). How any different ways could the next 10 sales happen? (Example (W,S,R,R,D,W,D,W,R,A) 10 sales

$$
555 \ldots-1=5=5^{10}=9,765,625
$$

13. (3 points: 3 minutes)

A store sells five different types of home appliances - refrigerators (R), washing machines (W), dryers (D), stoves (S), and automatic dishwashers (A). How many different ways could the sales manager arrange one of each type of appliance along the back wall to show customers?

$$
\text { RWDSA all anange menes }=5 \text { ! or } 5 P_{5}
$$

$$
\text { or } 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=\frac{120}{\text { ways }}
$$

14. (3 points : 3 minutes)

A store that sells five different types of home appliances - refrigerators (R), washing machines (W), dryers (D), stoves (S), and automatic dishwashers (A) - employs 20 people on the sales floor. Management has decided to select 5 of the $\mathbf{2 0}$ to take part in special training. How many different groups of 5 could management choose?
order does not cocint

$$
20 C_{S}=15,504
$$

15. (6 points; 5 minutes)

A company purchases thousands of items every day for their-business. Tomorrow, 82% of the items they will receive will be "good" and the other 72% will be "bad". If the company selects 8 items at random tomorrow, what is the probability that exactly 5 of the 8 will be "good"?

- Number of trials $=8$ // "8 out of Thousands" (indepardant)
- 2 possible results of each trial "good" and "bad"
- prob(good)

$$
\begin{aligned}
P(\text { exactly } 5 \text { good }) & ={ }_{n} C_{x}(p)^{x}(q)^{x-x} \\
& ={ }_{8} C_{5}(0.82)^{5}(0.18)^{3}=0.121
\end{aligned}
$$

