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Statistics 300:
Elementary Statistics

Section 9-3

Section 9-3 concerns
Confidence Intervals

and
Hypothesis tests for
the difference of two 

means, (µ1 – µ2)
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• Apply the new concept here also:
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Application: Use sample values
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Alternative approach when 
two samples come from 

populations with equal variances

[ “homogeneous variances”
or “homoscedastic” ] 
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When samples come from 
populations with equal variances:
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When samples come from 
populations with equal variances:
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Alternative notation for the
preceding formula:
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When doing confidence intervals
of hypothesis tests involving 

(m1 – m2) one must first decide 
whether the variances are

different or the same,
heterogeneous or homogeneous.
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If the variances are different
(heterogeneous), then use the
following expression as part

of the confidence interval formula
or the test statistic:
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If the variances are the same
(homogeneous), then use this
alternative expression as part

of the confidence interval formula
or the test statistic:

pooled"" means
""  where
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When the variances are pooled
to estimate the common 

(homogeneous) variance, then 
the degrees of freedom for both 

samples are also pooled by 
adding them together.
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Application to CI(µ1 - µ2)
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Application to CI(µ1 - µ2)
when variances are different

2

2
2

1

2
1

2/

2121 )()(

n
s

n
s

tE

ExxCI

+⋅=

±−=−

α

µµ

In this case, the degrees of freedom for “t” will be
the smaller of the two sample degrees of freedom.

Application to CI(µ1 - µ2)
when variances are the same
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In this case, the degrees of freedom for “t” will be
the sum of the two sample degrees of freedom.
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Tests concerning (µ1 - µ2)
Test Statistic
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Test statistic for (µ1 - µ2)
when variances are different
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In this case, the degrees of freedom for “t” will be
the smaller of the two sample degrees of freedom.

Test statistic for (µ1 - µ2)
when variances are the same
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In this case, the degrees of freedom for “t” will be
the ssum of the two sample degrees of freedom.
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Section 9-3
Handling Claims / Hypotheses

• Write the claim in a symbolic 
expression as naturally as you can

• Then rearrange the expression to 
have the difference between the two 
means on one side of the relational 
operator (< > = …)

Section 9-3
Handling Claims / Hypotheses
• Statement: Mean #2 is less than four 

units more than Mean #1
• So:
• Rearrange:
• H0:
• H1: 

412 +< µµ

( ) 412 <− µµ

( ) 412 <− µµ

( ) 412 ≥− µµ

Section 9-3
Handling Claims / Hypotheses
• Statement: On average, treatment A 

produces 18 more than treatment B
• So:
• Rearrange:
• H0:
• H1: 

18 += BA µµ

( ) 18 =− BA µµ

( ) 18 =− BA µµ

( ) 18 ≠− BA µµ


