Statistics 300: Elementary Statistics

Section 9-2

Section 9-2 concerns

 Confidence Intervals andHypothesis tests for the difference of two proportions, $\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right)$

What is the variance of

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) ?
$$

- New concept:

> | If x and y are independent |
| :--- |
| random variables, then the |
| variance of their difference |
| is the sum of their variances |
| $\sigma_{x-y}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}$ |

What is the variance of

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) ?
$$

- Apply the new concept (step 1):

$$
\begin{aligned}
& x=\hat{p}_{1} \\
& y=\hat{p}_{2} \\
& \sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\sigma_{\hat{p}_{1}}^{2}+\sigma_{\hat{p}_{2}}^{2}
\end{aligned}
$$

What is the variance of

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) ?
$$

- Apply the new concept (step 2):

$$
\begin{aligned}
& \sigma_{\hat{p}_{1}}^{2}=\frac{p_{1} q_{1}}{n_{1}} \\
& \sigma_{\hat{p}_{2}}^{2}=\frac{p_{2} q_{2}}{n_{2}} \\
& \sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}
\end{aligned}
$$

What is the variance of

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) ?
$$

- Apply the new concept (step 3):

$$
\begin{aligned}
& \text { replace the unknown } \mathrm{p} \text { and } \mathrm{q} \\
& \text { with their sample estimates } \\
& \sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}
\end{aligned}
$$

The variance of $\left(\hat{p}_{1}-\hat{p}_{2}\right)$
Is used in the $\mathbf{C I}\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)$

$$
\begin{aligned}
& C I\left(p_{1}-p_{2}\right)= \\
& \left(\hat{p}_{1}-\hat{p}_{2}\right) \pm Z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}
\end{aligned}
$$

Tests concerning ($\mathbf{p}_{1}-\mathbf{p}_{2}$) Test Statistic

$$
\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)_{0}}{S_{\left(p_{1}-p_{2}\right)}}
$$

The denominator has two forms depending on H_{0} :

If $\mathbf{H}_{\mathbf{0}}$: relates $\left(\mathbf{p}_{\mathbf{1}}-\mathbf{p}_{2}\right)$ to zero, then use this test statistic:

$$
\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)_{0}}{\sqrt{\frac{\bar{p} \bar{q}}{n_{1}}+\frac{\bar{p} \bar{q}}{n_{2}}}}
$$

where $\overline{\mathrm{p}}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}$

If \mathbf{H}_{0} : relates $\left(\mathbf{p}_{1}-p_{2}\right)$ to a non-zero value, then use this test statistic:

$$
\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)_{0}}{\sqrt{\frac{\hat{p} \hat{q}}{n_{1}}+\frac{\hat{p} \hat{q}}{n_{2}}}}
$$

Do not use $\overline{\mathrm{p}}$

Section 9-2

Handling Claims / Hypotheses \qquad

- Write the claim in a symbolic expression as naturally as you can
- Then rearrange the expression to have the difference between the two means on one side of the relational operator (<> = ...)

Section 9-2

Handling Claims / Hypotheses \qquad

- Statement: proportion \#1 is less than 0.04 more than proportion \#2
- So $p_{2}<p_{1}+0.04$
- Rearrange $\left(p_{2}-p_{1}\right)<0.04$
- $\mathbf{H}_{\mathbf{0}}:\left(p_{2}-p_{1}\right) \geq 0.04$
- $\mathbf{H}_{\mathbf{1}}:\left(p_{2}-p_{1}\right)<0.04$
\qquad
\qquad
\qquad
\qquad
\qquad

Section 9-2

Handling Claims / Hypotheses

- Statement: Proportion A is $\mathbf{0 . 1 8}$ more than proportion B
- So $p_{A}=p_{B}+0.18$
- Rearrange: $\left(p_{A}-p_{B}\right)=0.18$
- $\mathbf{H}_{\mathbf{0}}:\left(p_{A}-p_{B}\right)=0.18$
- $\mathbf{H}_{\mathbf{1}}:\left(p_{A}-p_{B}\right) \neq 18$

