Statistics 300: Elementary Statistics

Section 8-2

Hypothesis Testing

- Principles
- Vocabulary
- Problems

Principles

- Game
- I say something is true
- Then we get some data
- Then you decide whether
-Mr. Larsen is correct, or
-Mr. Larsen is a lying dog

Risky Game

- Situation \#1
- This jar has exactly (no more and no less than) 100 black marbles
- You extract a red marble
- Correct conclusion:
- Mr. Larsen is a lying dog

Principles

- My statement will lead to certain probability rules and results
- Probability I told the truth is "zero"
- No risk of false accusation

Principles

- Game
- I say something is true
- Then we get some data
- Then you decide whether
-Mr. Larsen is correct, or
-Mr. Larsen has inadvertently made a very understandable error

Principles
- Game
- I say something is true
- Then we get some data
- Then you decide whether
- Mr. Larsen is correct, or
- Mr. Larsen has inadvertently
made a very understandable error

\qquad

Principles

- My statement will lead to certain probability rules and results
- Some risk of false accusation
- What risk level do you accept?

Risky Game

- Situation \#2
- This jar has exactly (no more and no less than) 999,999 black marbles and one red marble
- You extract a red marble
- Correct conclusion:
-Mr. Larsen is mistaken
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Risky Game

- Situation \#2 (continued)
- Mr. Larsen is mistaken because if he is right, the one red marble was a 1-in-a-million event.
- Almost certainly, more than red marbles are in the far than just one

Risky Game

- Situation \#3
- This jar has 900,000 black marbles and 100,000 red marbles
- You extract a red marble
- Correct conclusion:
-Mr. Larsen's statement is reasonable

Risky Game

- Situation \#3 (continued)
- Mr. Larsen's statement is reasonable because it makes $\mathbf{P}($ one red marble $)=\mathbf{1 0 \%}$.
- A ten percent chance is not too far fetched.

Principles (reworded)

- The statement or "hypothesis" will lead to certain probability rules and results
- Some risk of false accusation
- What risk level do you accept?
\qquad

Risky Game

- Situation \#4
- This jar has 900,000 black marbles and 100,000 red marbles
- A random sample of four marbles has 3 red and 1 black
- If Mr. Larsen was correct, what is the probability of this event?

Risky Game

- Situation \#4 (continued)
- Binomial: $\mathrm{n}=4, \mathrm{x}=1, \mathrm{p}=0.9$
- Mr. Larsen's statement is not reasonable because it makes $\mathbf{P}($ three red marbles $)=0.0036$.
- A less than one percent chance is too far fetched.

Formal Testing Method

Structure and Vocabulary

- The risk you are willing to take of making a false accusation is called the Significance Level
- Called "alpha" or α
- P[Type I error]

Conventional α levels

- Two-tail	One-tail
- 0.20	$\mathbf{0 . 1 0}$
- 0.10	$\mathbf{0 . 0 5}$
- $\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2 5}$
- $\mathbf{0 . 0 2}$	$\mathbf{0 . 0 1}$
- $\mathbf{0 . 0 1}$	$\mathbf{0 . 0 0 5}$

Formal Testing Method
Structure and Vocabulary

- Critical Value
-similar to $Z_{\alpha / 2}$ in confidence int. \qquad
-separates two decision regions
- Critical Region
- where you say I am incorrect
\qquad
\qquad
\qquad
\qquad
\qquad

Formal Testing Method

Structure and Vocabulary

- Critical Value and Critical Region are based on three things: \qquad
-the hypothesis
-the significance level
-the parameter being tested \qquad
- not based on data from a sample
- Watch how these work together

Test Statistic for μ

$$
\frac{\bar{x}-\mu_{0}}{\left(\frac{s}{\sqrt{n}}\right)} \sim t_{(n-1) d f}
$$

Test Statistic for \mathbf{p}

 ($\mathrm{np}_{0}>5$ and $\mathrm{nq}_{0}>5$)$\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}} \sim N(0,1)$

Test Statistic for σ

$$
\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\mathrm{~S}_{0}^{2}} \sim ?_{(\mathrm{n}-1) \mathrm{df}}^{2}
$$

Formal Testing Method

Structure and Vocabulary

- \mathbf{H}_{0} : always is $=\leq$ or \geq
- H_{1} : always is $\neq>$ or <

Formal Testing Method

Structure and Vocabulary

- In the alternative hypotheses, H_{1} :, \qquad put the parameter on the left and the inequality symbol will point to
\qquad the "tail" or "tails"
- $\mathbf{H}_{1}: \mu, \mathbf{p}, \sigma \neq$ is "two-tailed"
- $\mathbf{H}_{1}: \mu, \mathbf{p}, \sigma<$ is "left-tailed"
- $\mathbf{H}_{1}: \mu, \mathbf{p}, \sigma>$ is "right-tailed"

Formal Testing Method
Structure and Vocabulary

- Example of Two-tailed Test
$-\mathbf{H}_{0}: \mu=\mathbf{1 0 0}$
$-\mathbf{H}_{1}: \mu \neq 100$

Formal Testing Method

Structure and Vocabulary

- Example of Two-tailed Test
$-\mathbf{H}_{0}: \mu=100$
$-\mathbf{H}_{1}: \mu \neq 100$
- Significance level, $\alpha=0.05$
- Parameter of interest is μ

Formal Testing Method
Structure and Vocabulary

- Example of Two-tailed Test
$-\mathrm{H}_{0}: \mu=100$
$-\mathbf{H}_{1}: \mu \neq 100$
- Significance level, $\alpha=0.10$
- Parameter of interest is μ

Formal Testing Method
Structure and Vocabulary

- Example of Left-tailed Test
$-\mathrm{H}_{0}: \mathbf{p} \geq \mathbf{0 . 3 5}$
$-\mathrm{H}_{1}: \mathrm{p}<0.35$

Formal Testing Method

Structure and Vocabulary

- Example of Left-tailed Test
$-\mathrm{H}_{0}: \mathbf{p} \geq \mathbf{0 . 3 5}$
$-\mathrm{H}_{1}: \mathrm{p}<0.35$
- Significance level, $\alpha=0.05$
- Parameter of interest is " p "

Formal Testing Method
Structure and Vocabulary

- Example of Left-tailed Test
$-\mathrm{H}_{0}: \mathrm{p} \geq 0.35$
$-\mathrm{H}_{1}: \mathrm{p}<0.35$
- Significance level, $\alpha=0.10$
- Parameter of interest is " p "

Formal Testing Method
Structure and Vocabulary

- Example of Right-tailed Test
$-\mathrm{H}_{0}: \sigma \leq 10$
$-\mathrm{H}_{1}: \sigma>10$

Formal Testing Method

Structure and Vocabulary

- Example of Right-tailed Test
$-\mathrm{H}_{\mathbf{0}}$: $\sigma \leq 10$
$-\mathrm{H}_{1}: \sigma>10$
- Significance level, $\alpha=0.05$
- Parameter of interest is σ

Formal Testing Method
Structure and Vocabulary

- Example of Right-tailed Test
$-\mathrm{H}_{0}: \sigma \leq 10$
$-\mathrm{H}_{1}: \sigma>10$
- Significance level, $\alpha=0.10$
- Parameter of interest is σ

Claims

- is, is equal to, equals
- less than
- greater than
- not, no less than
- not, no more than
- at least
- at most
\qquad \leq

Claims

- is, is equal to, equals
- H_{0} : = \qquad
- $\mathrm{H}_{1}: \neq$

Claims

- less than
- $\mathrm{H}_{\mathbf{0}}$: \geq
- H_{1} : <

Claims

- greater than
- $\mathrm{H}_{0}: \leq$
- H_{1} : >

Claims

- not, no less than
- H_{0} : \geq
- H_{1} : <

Claims

- not, no more than
- $\mathrm{H}_{0}: \leq$
- H_{1} : >

Claims

- at least
- H_{0} : \geq
- H_{1} : <

Claims

- at most
- \mathbf{H}_{0} : \leq
- H_{1} : >

Structure and Vocabulary

- Type I error: Deciding that \mathbf{H}_{0} : is wrong when (in fact) it is correct
- Type II error: Deciding that \mathbf{H}_{0} : is correct when (in fact) is is wrong

Structure and Vocabulary

- Interpreting the test result
-The hypothesis is not reasonable
- The Hypothesis is reasonable
- Best to define reasonable and unreasonable before the experiment so all parties agree

Traditional Approach to Hypothesis Testing

Test Statistic

- Based on Data from a Sample and on the Null Hypothesis, H_{0} :
- For each parameter (μ, \mathbf{p}, σ), the
\qquad
\qquad
\qquad
\qquad test statistic will be different
- Each test statistic follows a probability distribution

Traditional Approach

- Identify parameter and claim \qquad
- Set up H_{0} : and H_{1} :
- Select significance Level, α
- Identify test statistic \& distribution \qquad
- Determine critical value and region \qquad
- Calculate test statistic
- Decide: "Reject" or "Do not reject",

Next three slides are repeats of slides 19-21

Test Statistic for μ (small sample size: \mathbf{n})
$\frac{\bar{x}-\mu_{0}}{\left(\frac{s}{\sqrt{n}}\right)} \sim t_{(n-1) d f}$

Test Statistic for p $\left(\mathrm{np}_{0}>5\right.$ and $\mathrm{nq}_{0}>5$)
$\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}} \sim N(0,1)$

Test Statistic for σ

$$
\frac{(\mathrm{n}-1) \mathrm{s}^{2}}{\mathrm{~s}_{0}^{2}} \sim ?_{(\mathrm{n}-1) \mathrm{df}}^{2}
$$

