Statistics 300: Elementary Statistics

Sections 7-2, 7-3, 7-4, 7-5

Parameter Estimation

- Point Estimate
-Best single value to use
- Question
-What is the probability this estimate is the correct value?

Parameter Estimation

- Question
-What is the probability this estimate is the correct value?
- Answer
-zero : assuming " x " is a continuous random variable
-Example for Uniform Distribution
\qquad

If $X \sim \mathbf{U}[100,500]$ then			
- $\mathbf{P}(\mathrm{x}=300)=(300-300) /(\mathbf{5 0 0}-100)$			
- $=0$			
100	300	400	500

Parameter Estimation

- Pop. mean μ
-Sample mean \bar{x}
- Pop. proportion p -Sample proportion \hat{p}
- Pop. standard deviation σ
-Sample standard deviation s

Problem with Point Estimates

- The unknown parameter (μ, \mathbf{p}, etc.) is not exactly equal to our sample-based point estimate.
- So, how far away might it be?
- An interval estimate answers this question.

Confidence Interval

- A range of values that contains the true value of the population parameter with a ...
- Specified "level of confidence".
- [L(ower limit),U(pper limit)]

Terminology

- Confidence Level (a.k.a. Degree of Confidence)
- expressed as a percent (\%)
- Critical Values (a.k.a. Confidence Coefficients)

Terminology

- "alpha" " α " = 1-Confidence - more about α in Chapter 7
- Critical values -express the confidence level

Confidence Interval for μ

If σ is known (this is a rare situation)
$=\bar{x} \pm E$
$E=z_{\alpha / 2} \cdot\left(\frac{\sigma}{\sqrt{n}}\right)$

Confidence Interval for μ

If σ is known (this is a rare situation)

$$
\begin{gathered}
\text { if } \mathrm{x} \sim \mathbf{N}(?, \sigma) \\
=\bar{x} \pm z_{\alpha / 2} \cdot\left(\frac{\sigma}{\sqrt{n}}\right)
\end{gathered}
$$

Why does the
Confidence Interval for μ look like this?
$=\bar{x} \pm z_{\alpha / 2} \cdot\left(\frac{\sigma}{\sqrt{n}}\right)$
$\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ make an \bar{x} value into a z -score.

The generalz-score expression is

$$
z=\frac{(x-\mu)}{\sigma}
$$

for \bar{x},
$\mu_{\bar{x}}$ is $\mu:$ unchanged and
$\sigma_{\bar{x}}$ is $\frac{\sigma}{\sqrt{n}}$
so a Z - score
based on \bar{x} is
$z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$

Using the Empirical Rule

Make a probability statement :

$$
P\left(-2<\frac{(\bar{x}-\mu)}{\sigma / \sqrt{n}}<2\right)=95 \%
$$

Check out the "Confidence z-scores" on the WEB page.

```
(In pdf format.)
```


Use basic rules of algebra to rearrange the parts of this z-score.

Manipulate the probabilit y statement:
$P(-2(\sigma / \sqrt{n})<(\bar{x}-\mu)<2(\sigma / \sqrt{n}))=0.95$

Manipulate the probability statement:

$$
P(-\bar{x}-2(\sigma / \sqrt{n})<-\mu<-\bar{x}+2(\sigma / \sqrt{n}))=0.95
$$

Confidence = 95\%
$\alpha=1 \mathbf{- 9 5 \%}=5 \%$
$\alpha / 2=2.5 \%=0.025$

Manipulate the probability statement:
multiply throughby (-1) and change the orderof the terms

$$
\begin{gathered}
P(\bar{x}-2(\sigma / \sqrt{n})<\mu<\bar{x}+2(\sigma / \sqrt{n}))=0.95 \\
\text { Confidence }=\mathbf{9 5 \%} \\
\alpha=\mathbf{1 - 9 5 \%}=\mathbf{5 \%} \\
\alpha / 2=\mathbf{2 . 5 \%}=\mathbf{0 . 0 2 5}
\end{gathered}
$$

Confidence Interval for μ

If σ is not known (usual situation) $^{\prime}$

$$
=\bar{x} \pm t_{\alpha / 2} \cdot\left(\frac{s}{\sqrt{n}}\right)
$$

> Sample Size Needed to Estimate μ within E, with Confidence $=1-\alpha$

$$
n=\left[\frac{Z_{\alpha / 2} \cdot \hat{\sigma}}{E}\right]^{2}
$$

Components of Sample Size \qquad Formula when Estimating μ

- $Z_{\alpha / 2}$ reflects confidence level
- standard normal distribution
- $\hat{\sigma}$ is an estimate of σ, the standard deviation of the pop.
- E is the acceptable "margin of error" when estimating μ

Confidence Interval for \mathbf{p}

- The Binomial Distribution gives us a starting point for determining the distribution of the sample proportion : \hat{p}

$$
\hat{p}=\frac{x}{n}=\frac{\text { successes }}{\text { trials }}
$$

For Binomial " x "

$$
\begin{gathered}
\mu=n p \\
\sigma=\sqrt{n p q}
\end{gathered}
$$

For the Sample Proportion

$$
\hat{p}=\frac{x}{n}=\frac{1}{n}(x)
$$

x is a random variable n is a constant

Time Out for a Principle:

If μ is the mean of X and " a " is a constant, what is the mean of aX ?

Answer: $a \cdot \mu$

Apply that Principle!

- Let "a" be equal to " $\mathbf{1 / n}$ "
- so $\hat{p}=a X=\left(\frac{1}{n}\right) X=\frac{X}{n}$
- and $\mu_{\hat{p}}=a \mu_{x}=a(n p)$

$$
=\left(\frac{1}{n}\right) \cdot n p=p
$$

Time Out for another Principle:

If σ_{x}^{2} is the variance of X and " a " is a constant, what is the variance
of aX?

Answer: $\sigma_{a X}^{2}=a^{2} \sigma_{x}^{2}$

Apply that Principle!

- Let x be the binomial " x "
- Its variance is $\mathbf{n p q}=\mathbf{n p}(\mathbf{1 - p})$, which is the square of is standard deviation

Apply that Principle!

- Let "a" be equal to " $1 / n$ "
- so $\hat{p}=a X=\left(\frac{1}{n}\right) X=\frac{X}{n}$
- and $\quad \sigma_{\hat{p}}^{2}=a^{2} \sigma_{x}^{2}=(1 / n)^{2}(n p q)$

Apply that Principle!
$\left(\frac{1}{n}\right)^{2} \cdot n p q=\frac{p q}{n}=\sigma_{\hat{p}}^{2}$
and
$\sigma_{\hat{p}}=\sqrt{\frac{p q}{n}}$

When n is Large,

$$
\hat{p} \sim N\left(\mu=p, \sigma=\sqrt{\frac{p q}{n}}\right)
$$

What is a Large " n "

 in this situation?- Large enough so np > 5
- Large enough so n(1-p) >5
- Examples:
$-(100)(0.04)=4($ too small $)$
$-(1000)(0.01)=10$ (big enough)

Now make a z-score

$$
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}
$$

And rearrange for a CI(p)

Using the Empirical Rule

Make a probability statement:

$$
P\left(-1.96<\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}<1.96\right)=95 \%
$$

Use basic rules of algebra to rearrange the parts of this \mathbf{z}-score.

Manipulate the probability statement:
Step 1: Multiply through by $\sqrt{\frac{p q}{n}}$:
$P\left(-1.96 \sqrt{\frac{p q}{n}}<(\hat{p}-p)<1.96 \sqrt{\frac{p q}{n}}\right)=0.95$

Manipulate the probability statement:
Step 2: Subract \hat{p} from all parts of the expression:

$P\left(-\hat{p}-1.96 \sqrt{\frac{p q}{n}}<-p<-\hat{p}+1.96 \sqrt{\frac{p q}{n}}\right)=0.95$ | $\begin{array}{l}\text { Manipulate the probability statement: } \\ \text { Step 3: Multiply through by }-1 \text { : } \\ \quad \text { (remember to switch the directions of }\langle>\text {) } \\ P\left(\hat{p}+1.96 \sqrt{\frac{p q}{n}}>p>\hat{p}-1.96 \sqrt{\frac{p q}{n}}\right)=0.95\end{array}$ |
:---		$\begin{array}{l}\text { Manipulate the probability statement: } \\ \text { Step 3: Multiply through by }-1 \text { : } \\ \quad \text { (remember to switch the directions of }\langle>\text {) } \\ P\left(\hat{p}+1.96 \sqrt{\frac{p q}{n}}>p>\hat{p}-1.96 \sqrt{\frac{p q}{n}}\right)=0.95\end{array}$
:---		$\begin{array}{l}\text { Manipulate the probability statement: } \\ \text { Step 3: Multiply through by }-1 \text { : } \\ \quad \text { (remember to switch the directions of }\langle>\text {) } \\ P\left(\hat{p}+1.96 \sqrt{\frac{p q}{n}}>p>\hat{p}-1.96 \sqrt{\frac{p q}{n}}\right)=0.95\end{array}$
:---		$\begin{array}{l}\text { Manipulate the probability statement: } \\ \text { Step 3: Multiply through by }-1 \text { : } \\ \quad \text { (remember to switch the directions of }\langle>\text {) } \\ P\left(\hat{p}+1.96 \sqrt{\frac{p q}{n}}>p>\hat{p}-1.96 \sqrt{\frac{p q}{n}}\right)=0.95\end{array}$
| :--- | | Manipulate the probability statement: |
| :---: |
| Step 4: Swap the left and right sides to |
| put in conventional $<p<$ form: |
| $P\left(\hat{p}-1.96 \sqrt{\frac{p q}{n}}<p<\hat{p}+1.96 \sqrt{\frac{p q}{n}}\right)=0.95$ | | Manipulate the probability statement: |
| :---: |
| Step 4: Swap the left and right sides to |
| put in conventional $<p<$ form: |
| $P\left(\hat{p}-1.96 \sqrt{\frac{p q}{n}}<p<\hat{p}+1.96 \sqrt{\frac{p q}{n}}\right)=0.95$ | | Manipulate the probability statement: |
| :---: |
| Step 4: Swap the left and right sides to |
| put in conventional $<p<$ form: |
| $P\left(\hat{p}-1.96 \sqrt{\frac{p q}{n}}<p<\hat{p}+1.96 \sqrt{\frac{p q}{n}}\right)=0.95$ | | Manipulate the probability statement: |
| :---: |
| Step 4: Swap the left and right sides to |
| put in conventional $<p<$ form: |
| $P\left(\hat{p}-1.96 \sqrt{\frac{p q}{n}}<p<\hat{p}+1.96 \sqrt{\frac{p q}{n}}\right)=0.95$ |

\qquad

Confidence Interval for \mathbf{p}

(but the unknown p is in the
formula. What can we do?)
$=\hat{p} \pm z_{\alpha / 2} \cdot \sqrt{\frac{p q}{n}}$

Confidence Interval for \mathbf{p}

(substitute sample statistic for \mathbf{p})

$$
=\hat{p} \pm z_{\alpha / 2} \cdot \sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

Sample Size Needed

 to Estimate "p" within E, with Confid. $=1-\alpha$$$
n=\left(\frac{Z_{\alpha / 2}^{2}}{E^{2}}\right) \cdot \hat{p} \hat{q}
$$

Components of Sample Size Formula when Estimating "p"

- $Z_{\alpha / 2}$ is based on α using the standard normal distribution
- p and q are estimates of the population proportions of "successes" and "failures"
- \mathbf{E} is the acceptable "margin of error" when estimating μ

Components of Sample Size Formula when Estimating "p"

- p and q are estimates of the population proportions of "successes" and "failures"
- Use relevant information to estimate p and q if available
- Otherwise, use $p=q=0.5$, so the product $\mathbf{p q}=0.25$

> Confidence Interval for σ starts with this fact
> if $x \sim N(\mu, \sigma)$
> then
> $\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi^{2}($ chi square $)$

What have we studied

 already that connects with Chi-square random values?$$
\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi^{2}(\text { chi square })
$$

$$
\begin{aligned}
& \frac{(n-1) s^{2}}{\sigma^{2}}=\frac{(n-1) \frac{\sum(x-\mu)^{2}}{(n-1)}}{\sigma^{2}} \\
& =\frac{\sum(x-\mu)^{2}}{\sigma^{2}}
\end{aligned}
$$

$$
=\sum z^{2} \quad \text { a sum of squared }
$$

standard normal values

Confidence Interval for σ

$$
\begin{aligned}
& L B=\sqrt{\frac{(n-1) s^{2}}{\chi_{R}^{2}}} \\
& U B=\sqrt{\frac{(n-1) s^{2}}{\chi_{L}^{2}}}
\end{aligned}
$$

