Statistics 300: Elementary Statistics

Sections 7-2, 7-3, 7-4, 7-5

Parameter Estimation

• Point Estimate -Best single value to use

• Question

-What is the probability this estimate is the correct value?

Parameter Estimation

• Question

-What is the probability this estimate is the correct value?

- Answer
 - –zero : assuming "x" is a continuous random variable
 - -Example for Uniform Distribution

Parameter Estimation

- Pop. mean m
- -Sample mean \overline{x} • Pop. proportion p
 - -Sample proportion \hat{p}
- Pop. standard deviation *s* -Sample standard deviation *s*

Problem with Point Estimates

- The unknown parameter (**m**p, etc.) is not exactly equal to our sample-based point estimate.
- So, how far away might it be?
- An interval estimate answers this question.

Confidence Interval

- A range of values that contains the true value of the population parameter with a ...
- Specified "level of confidence".
- [L(ower limit),U(pper limit)]

Terminology

- Confidence Level (a.k.a. Degree of Confidence)
 - expressed as a percent (%)
- Critical Values (a.k.a. Confidence Coefficients)

Terminology

- "alpha" "a" = 1-Confidence
 more about a in Chapter 7
- Critical values -express the confidence level

Why does the Confidence Interval for **m** look like this ?

$$\overline{x} \sim N(\mathbf{m}, \frac{\mathbf{S}}{\sqrt{n}})$$

make an \overline{x} value into a z-score.

for
$$\overline{x}$$
,
 $m_{\overline{x}}$ is m : unchanged
and

$$\boldsymbol{s}_{\bar{x}}$$
 is $\frac{\boldsymbol{s}}{\sqrt{n}}$

so a z - score
based on
$$\overline{x}$$
 is
$$z = \frac{\overline{x} - \mathbf{m}}{\mathbf{s} / \sqrt{n}}$$

Check out the "Confidence z-scores" on the WEB page.

(In pdf format.)

Use basic rules of algebra to rearrange the parts of this z-score.

Manipulate the probabilit y statement:

 $P\left(-2\left(\frac{s}{\sqrt{n}}\right) < (\overline{x} - m) < 2\left(\frac{s}{\sqrt{n}}\right)\right) = 0.95$

Manipulate the probability statement:

$$P\left(-\overline{x}-2\left(\frac{s}{\sqrt{n}}\right)<-\boldsymbol{m}<-\overline{x}+2\left(\frac{s}{\sqrt{n}}\right)\right)=0.95$$

Confidence = 95%**a** = 1 - 95% = 5%**a**/**2** = 2.5\% = 0.025

Manipulate the probability statement: multiply through by (-1) and change the order of the terms

$$P\left(\overline{x} - 2\left(\frac{s}{\sqrt{n}}\right) < m < \overline{x} + 2\left(\frac{s}{\sqrt{n}}\right)\right) = 0.95$$

Confidence = 95%
 $\mathbf{a} = 1 - 95\% = 5\%$

a/2 = 2.5% = 0.025

Confidence Interval for **m** If **s** is not known (usual situation)

$$= \overline{x} \pm t_{a_2} \cdot \left(\frac{s}{\sqrt{n}}\right)$$

Sample Size Needed
to Estimate **m**within E,
with Confidence = 1-**a**
$$n = \left[\frac{Z_{a/2} \cdot \hat{S}}{\frac{Z_{a/2}}{E}}\right]^2$$

Components of Sample Size Formula when Estimating **m**

- Z_{a/2} reflects confidence level – standard normal distribution
- \hat{s} is an estimate of s, the standard deviation of the pop.
- E is the acceptable "margin of error" when estimating **m**

Confidence Interval for p

• The Binomial Distribution gives us a starting point for determining the distribution of the sample proportion : \hat{p}

$$\hat{p} = \frac{x}{n} = \frac{successes}{trials}$$

For Binomial "x"

 $\mathbf{m} = np$

$$s = \sqrt{npq}$$

<u>Time Out</u> for a Principle:

If *m* is the mean of X and "a" is a <u>constant</u>, what is the mean of aX?

Answer: $a \cdot \mathbf{m}$

Apply that Principle!

• Let "a" be equal to "1/n"

• so
$$\hat{p} = aX = \left(\frac{1}{n}\right)X = \frac{X}{n}$$

• and $\boldsymbol{m}_{\hat{p}} = a\boldsymbol{m}_{x} = a(np)$

$$=\left(\frac{1}{n}\right)\cdot np = p$$

<u>Time Out</u> for another Principle:

If s_x^2 is the variance of X and "a" is a <u>constant</u>, what is the variance of aX?

Answer: $s_{ax}^{2} = a^{2}s_{x}^{2}$

Apply that Principle!

- Let x be the binomial "x"
- Its variance is npq = np(1-p), which is the square of is standard deviation

• Let "a" be equal to "1/n"

• so
$$\hat{p} = aX = \left(\frac{1}{n}\right)X = \frac{X}{n}$$

• and $\boldsymbol{s}_{\hat{p}}^2 = a^2\boldsymbol{s}_X^2 = (1/n)^2(npq)$

Apply that Principle!

$$\left(\frac{1}{n}\right)^{2} \cdot npq = \frac{pq}{n} = \mathbf{s}_{\hat{p}}^{2}$$
and

$$\mathbf{s}_{\hat{p}} = \sqrt{\frac{pq}{n}}$$

When n is Large,

$$\hat{p} \sim N\left(\mathbf{m} = p, \mathbf{s} = \sqrt{\frac{pq}{n}}\right)$$

What is a Large "n" in this situation?

- Large enough so np > 5
- Large enough so n(1-p) > 5
- Examples:
 - -(100)(0.04) = 4 (too small)
 - -(1000)(0.01) = 10 (big enough)

Now make a z-score

$$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$
And rearrange for a CI(p)

Using the Empirical Rule
Make a probability statement:
$$P\left(-1.96 < \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} < 1.96\right) = 95\%$$

Use basic rules of algebra to rearrange the parts of this z-score.

Manipulate the probability statement:
Step 1: Multiply through by
$$\sqrt{\frac{pq}{n}}$$
:
 $P\left(-1.96\sqrt{\frac{pq}{n}} < (\hat{p} - p) < 1.96\sqrt{\frac{pq}{n}}\right) = 0.95$

Manipulate the probability statement:

Step 2: Subract \hat{p} from all parts of the expression:

$$P\left(-\hat{p}-1.96\sqrt{\frac{pq}{n}} < -p < -\hat{p}+1.96\sqrt{\frac{pq}{n}}\right) = 0.95$$

Manipulate the probability statement: Step 3: Multiply through by -1:

(remember to switch the directions of < >)

$$P\left(\hat{p}+1.96\sqrt{\frac{pq}{n}} > p > \hat{p}-1.96\sqrt{\frac{pq}{n}}\right) = 0.95$$

Manipulate the probability statement: Step 4: Swap the left and right sides to

put in conventional
$$form:$$

$$P\left(\hat{p} - 1.96\sqrt{\frac{pq}{n}}$$

Confidence Interval for p
(but the unknown p is in the
formula. What can we do?)
$$= \hat{p} \pm z_{a/2} \cdot \sqrt{\frac{pq}{n}}$$

Г

$$= \hat{p} \pm z_{\mathbf{a}_{2}'} \cdot \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Sample Size Needed to Estimate "p" within E, with Confid.=1-**a**

$$n = \left(\frac{Z_{a/2}^2}{E^2}\right) \cdot \hat{p}\hat{q}$$

Components of Sample Size Formula when Estimating "p"

- $Z_{a/2}$ is based on **a** using the standard normal distribution
- p and q are estimates of the population proportions of "successes" and "failures"
- E is the acceptable "margin of error" when estimating **m**

Components of Sample Size Formula when Estimating "p"

- p and q are estimates of the population proportions of "successes" and "failures"
- Use relevant information to estimate p and q if available
- Otherwise, use p = q = 0.5, so the product pq = 0.25

Confidence Interval for s starts with this fact if $x \sim N(m, s)$ then $\frac{(n-1)s^2}{s^2} \sim c^2$ (chi square)

What have we studied already that connects with Chi-square random values?

$$\frac{(n-1)s^2}{s^2} \sim c^2 \text{ (chi square)}$$

$$\frac{(n-1)s^2}{s^2} = \frac{(n-1)\frac{\sum(x-m)^2}{(n-1)}}{s^2}$$
$$= \frac{\sum(x-m)^2}{s^2}$$

$$\sum \left[\frac{(x-m)^2}{s^2} \right] = \sum \left[\frac{(x-m)}{s} \right]^2$$
$$= \sum z^2 \text{ a sum of squared standard normal values}$$

