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Statistics 300:
Elementary Statistics

Sections 7-2, 7-3, 7-4, 7-5

Parameter Estimation

• Point Estimate
–Best single value to use

• Question
–What is the probability this 

estimate is the correct value?

Parameter Estimation

• Question
–What is the probability this 

estimate is the correct value?

• Answer
–zero : assuming “x” is a 

continuous random variable
–Example for Uniform Distribution
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If  X ~ U[100,500] then

• P(x = 300) = (300-300)/(500-100)
• = 0

100                        300           400            500  

Parameter Estimation

• Pop. mean 
– Sample mean 

• Pop. proportion
– Sample proportion

• Pop. standard deviation
– Sample standard deviation 
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Problem with Point Estimates

• The unknown parameter (µ, p, 
etc.) is not exactly equal to our 
sample-based point estimate.

• So, how far away might it be?
• An interval estimate answers 

this question.
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Confidence Interval

• A range of values that contains 
the true value of the population 
parameter with a ...

• Specified “level of confidence”.
• [L(ower limit),U(pper limit)]

Terminology

• Confidence Level (a.k.a. Degree of 
Confidence)

– expressed as a percent (%)

• Critical Values (a.k.a. Confidence 
Coefficients)

Terminology

• “alpha” “α” = 1-Confidence
–more about α in Chapter 7

• Critical values
–express the confidence level
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Confidence Interval for µ
lf σ is known (this is a rare situation)
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Confidence Interval for µ
lf σ is known (this is a rare situation)

if x ~N(?,σ)
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Why does the 
Confidence Interval for µ 

look like this ?
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Using the Empirical Rule

Normal Distribution

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

0 . 4 0

0 . 4 5

-3 -2 -1 0 1 2 3

Value of Observation

R
el

at
iv

e 
lik

el
ih

o
o

d









2
α









2
α



7

Check out the 
“Confidence z-scores”

on the WEB page.

(In pdf format.)

Use basic rules of algebra 
to rearrange the parts of 

this z-score.
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95.022
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Confidence = 95%
α = 1 - 95% = 5%

α/2 =  2.5% = 0.025
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Confidence = 95%
α = 1 - 95% = 5%

α/2 =  2.5% = 0.025

Confidence Interval for µ
lf σ is not known (usual situation)
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Sample Size Needed
to Estimate µ within E,
with Confidence = 1-α
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Components of Sample Size
Formula when Estimating µ

• Zα /2 reflects confidence level
– standard normal distribution

• is an estimate of      , the 
standard deviation of the pop.

• E is the acceptable “margin of 
error” when estimating µ

σ̂ σ

Confidence Interval for p

• The Binomial Distribution 
gives us a starting point for 
determining the distribution 
of the sample proportion : p̂

trials
successes

n
x

p ==ˆ
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For Binomial “x”

npq=σ

np=µ

For the Sample 
Proportion

x is a random variable
n is a constant

( )x
nn

x
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Time Out for a Principle:

If      is the mean of X and “a” is a 
constant, what is the mean of aX?

Answer: .

µ

µ⋅a



11

Apply that Principle!

• Let “a” be equal to “1/n”
• so

• and 
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Time Out for another 
Principle:

If      is the variance of X and “a”
is a constant, what is the variance 

of aX?

Answer: .

2
xσ

222
xaX a σσ =

Apply that Principle!

• Let x be the binomial “x”
• Its variance is npq = np(1-p), 

which is the square of is 
standard deviation
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Apply that Principle!

• Let “a” be equal to “1/n”

• so

• and 
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Apply that Principle!
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What is a Large “n”
in this situation?

• Large enough so np > 5
• Large enough so n(1-p) > 5
• Examples:

– (100)(0.04) = 4  (too small)
–(1000)(0.01) = 10 (big enough)

Now make a z-score
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And rearrange for a CI(p)

Make a probability statement:
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Using the Empirical Rule
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Normal Distribution
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Use basic rules of algebra 
to rearrange the parts of 

this z-score.

( )

Manipulate the probability statement:

Step 1: Multiply through by   :

ˆ1.96 1.96 0.95
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Manipulate the probability statement:
ˆStep 2: Subract  from all parts of the expression:

ˆ ˆ1.96 1.96 0.95

p
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Manipulate the probability statement:

Step 3: Multiply through by -1:
    (remember to switch the directions of < >)
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Manipulate the probability statement:

Step 4: Swap the left and right sides to
            put in conventional <  < form:
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Confidence Interval for p
(but the unknown p is in the 
formula.  What can we do?)
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Components of Sample Size
Formula when Estimating “p”

• Zα /2 is based on α using the 
standard normal distribution

• p and q are estimates of the 
population proportions of 
“successes” and “failures”

• E is the acceptable “margin 
of error” when estimating µ

Components of Sample Size
Formula when Estimating “p”

• p and q are estimates of the 
population proportions of 
“successes” and “failures”

• Use relevant information to 
estimate p and q if available

• Otherwise, use p = q = 0.5, so 
the product pq = 0.25

Confidence Interval for σ
starts with this fact

then
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What have we studied 
already that connects with 

Chi-square random values?
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Confidence Interval for σ
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