Statistics 300: Elementary Statistics Section 6-5

Central Limit Theorem

- Given: X has mean = mand standard deviation = s
- For a specified sample size "n"
- The number of possible samples of size n is usually very large

Central Limit Theorem

- The number of possible samples of size n is usually very large
- Example: Population N = 100 and sample size n = 10.
- The number of possible samples is $_{100}C_{10}$ = 1.73 * $10^{13}\,$

-		

Central Limit Theorem

- Each of the possible samples has its own sample mean
- The collection (set or population) of possible sample means has a mean and standard deviation
- The mean = **m**and the standard deviation = **s**/sqrt(n)

Central Limit Theorem

- Furthermore,
- If n > 30 or if $X \sim N(ms)$ then
- The distribution of all possible sample means is approximately a normal distribution

The Mean of a Random Sample has the distribution below if n > 30 or the "parent population" is "normal"

$$\overline{X} \sim N\left(m, \frac{s}{\sqrt{n}}\right)$$

Weights of oranges have a mean weight of 34.2 grams and a standard deviation of 6.4 grams.	
If 12 oranges are selected at random, what is the probability the average weight of the 12	
oranges will be greater than 30 g?	