Statistics 300:

Elementary Statistics

Section 6-5

Central Limit Theorem

- Given: \mathbf{X} has mean $=\mu$ and standard deviation $=\sigma$
- For a specified sample size " n "
- The number of possible samples of size n is usually very large

Central Limit Theorem

- The number of possible samples of size n is usually very large
- Example: Population N = 100 and sample size $\mathrm{n}=10$.
- The number of possible samples is ${ }_{100} \mathrm{C}_{10}=1.73 * 10^{13}$

Central Limit Theorem

- Each of the possible samples has its own sample mean
- The collection (set or population) of possible sample means has a mean and standard deviation
- The mean $=\mu$ and the standard deviation $=\sigma /$ sqrt(n)

Central Limit Theorem

- Furthermore,
- If $\mathbf{n}>\mathbf{3 0}$ or if $\mathbf{X} \sim \mathbf{N}(\mu, \sigma)$ then
- The distribution of all possible sample means is approximately a normal distribution

The Mean of a Random Sample has the distribution below if $\mathbf{n}>30$ or the "parent population" is "normal"

$$
\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
$$

Weights of oranges have a mean weight of 34.2 grams and a standard deviation of 6.4 grams.

If 12 oranges are selected at random, what is the probability the average weight of the 12 oranges will be greater than 30 g ?

