Statistics 300: Elementary Statistics

Section 11-3

Chapter 11 concerns the analysis of statistics that are "counts" in "categories"

Section 11-3 concerns "counts" in "categories" where each data value falls in two categories at the same time, such as "gender" and "age".

Chapter 11-3

- Cross-classified counts are also called "Contingency Tables"
- Counts are (or can be) arranged in rows and columns

Г	Tickets in Last 2 Years			1
Cars	0	1	2+	Row
1	178	19	8	205
2	167	20	10	197
3	116	30	104	250
4+	136	45	22	203
Column	597	114	144	855

Two types of Hypotheses

- Independence
 - The Row and Column factors affect counts independently
- Homogeneous proportions - All the Rows or all the Columns have the same set of proportions
- Calculations are the same for both types of hypotheses

Contingency Table Tests

• Expected counts are calculated using this formula

 $E = \frac{(row total)(col. total)}{grand total}$

Contingency Table Tests

- Compare observed counts and expected counts in each category
- Test statistic with "r" rows and "c" columns

$$\sum_{i=1}^{r} \sum_{j=1}^{c} \left[\frac{(Observed_{i,j} - Expected_{j})^2}{Expected_{i,j}} \right]$$

Contingency Table Test Statistic

$$\sum_{i=1}^{r} \sum_{j=1}^{c} \left[\frac{(Observed_{i,j} - Expected_{i,j})^{c}}{Expected_{i,j}} \right]$$

$$= \sum_{i=1}^{r} \left[\frac{(O-E)^{2}}{E} \right]$$

$$O = \text{observed count in row "i" and col" j"}$$

$$E = \text{expected count in row "i" and col" j"}$$

Contingency Table Test

- Observed counts come from the data
- Expected counts come from the hypothesis
- If H₀: is correct, the test statistic should follow a chi-square distribution with (r-1)(c-1) degrees of freedom

$$\sum_{i=1}^{r} \sum_{j=1}^{c} \left[\frac{(O-E)^2}{E} \right]$$

Contingency Table Tests

- All tests are "right tailed" tests
- Why?
- Because when the test statistic is close to zero, the data are in agreement with the null hypothesis
- The null hypothesis is only rejected when the test statistic value is large, i.e., in the right tail critical region