Statistics 300: Elementary Statistics

Section 10-4

For a single Point: (x,y)

Total Deviation = $(y - \overline{y})$ Explained Deviation = $(\hat{y} - \overline{y})$ Unexplained Deviation = $(y - \hat{y})$

 $(y-\overline{y})=(\hat{y}-\overline{y})+(y-\hat{y})$

For All Points Together: Total Variation in $y = \sum (y - \overline{y})^2$ Explained Variation in $y = \sum (\hat{y} - \overline{y})^2$ Unexplained Variation in $y = \sum (y - \hat{y})^2$

Important Relationship #1 Total Variation = Explained Variation + Unexplained Variation $\sum (y - \overline{y})^2 = \sum (\hat{y} - \overline{y})^2 + \sum (y - \hat{y})^2$

Important Relationship #2 r = correlation coefficient $r^{2} = \frac{\text{Explained Variation}}{\text{Total Variation}}$ $r^{2} = \frac{\sum (\hat{y} - \overline{y})^{2}}{\sum (y - \overline{y})^{2}}$

$$r^{2} = \frac{\sum (\hat{y} - \overline{y})^{2}}{\sum (y - \overline{y})^{2}}$$

so squaring the correlation gives the fraction, proportion, or percentage ($r^2 \times 100\%$) of the total variation that can be explained by the line. $1 - r^{2} = \frac{\sum (y - \hat{y})^{2}}{\sum (y - \overline{y})^{2}} = \frac{\text{Unexplained}}{\text{Total}}$ gives the fraction, proportion, or percentage ((1 - r²)×100%) of the total variation that cannot be explained by the line.

Useful calculation shortcut The total variation in y = $\sum (y - \overline{y})^2 = s_y^2 (n - 1)$ Practice doing this on your calculator.

"x" can be used the same way The total variation in x = $\sum (x - \overline{x})^2 = s_x^2 (n - 1)$ Practice calculating this starting with s_x not s_y

Calculating "Explained Variation"

Approach #2: Explained variation in y = (total) - (unexplained) = $\sum (y - \overline{y})^2 - \sum (y - \hat{y})^2$

Calculating the "Unexplained Variation"

Approach #1:

Unexplained variation in y =

$$(1-r^2)$$
(total variation) =

$$(1-\mathbf{r}^2) \times \sum (y-\overline{y})^2$$

12

11

CI(y|x₀) uses the
"Standard Error of Estimate"
CI(y | x₀) =
$$\hat{y} \pm E$$

$$E = \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum (x - \overline{x})^2}}$$
remember:

$$\sum (x - \overline{x})^2 = s_x^2 (n - 1)$$