# Statistics 1: <br> Elementary Statistics 

Section 5-3

## Requirements for a Binomial Distribution

- Fixed number of trials
- All trials are independent
- Each trial: two possible outcomes
- Probabilities same for each trial


## Requirements for a Binomial Distribution

- Experiment:
-Flip a coin until you get a "heads"
-Let $x=$ the number of flips before a heads occurs
- Not binomial. Why?


## Requirements for a Binomial Distribution

- Experiment:
-Select 13 cards from a deck of 52
-Let $x=$ the number of hearts
- Not binomial. Why?


## Requirements for a Binomial Distribution

- Experiment:
-Select a car at random from each of the 50 states
-Let $x=$ the number of FORDs in the sample
- Not binomial. Why?


## Requirements for a Binomial Distribution

## - Experiment:

-Select 20 random times during the day and check the traffic light $\qquad$ near your house
-Record the number of times it is red, yellow, or green

- Not binomial. Why?


## Are these Binomial?

- The number of sixes in 10 rolls of a die
- The number of contaminated fast-food hamburgers in a random sample of 100
- The number of girls in 30 births


## Notation for Binomial Distribution

- S means "success"
- F means "failure"
- $\mathbf{P}(\mathbf{S})=\mathbf{p}$
- $\mathbf{P}(\mathbf{F})=1-\mathrm{p}=\mathbf{q}$


## More Notation for Binomial Distribution

- $\mathbf{n}=$ the number of trials
- $x$ = the number of "successes" in $n$ trials
- $P(x)=$ the probability of exactly $x$ successes in $n$ trials

How do we get $P(x)$ ? Binomial Formula

$$
P(x)={ }_{n} C_{x} \cdot p^{x} \cdot q^{n-x}
$$

