Statistics 1: Elementary Statistics

Section 4-7

Probability

- Chapter 3
-Section 2: Fundamentals
-Section 3: Addition Rule
-Section 4: Multiplication Rule \#1 \qquad
-Section 5: Multiplication Rule \#2
-Section 6: Simulating Probabilities
-Section 7: Counting

Learning to Count

- Why do we need to learn to count?
- We approach probability through the doorway of relative frequency

Learning to Count

- Count ways for $\mathrm{A}=\mathrm{s}$
- Count all ways $=\mathbf{n}$
- Probability = s/n

Five Counting Rules

- Fundamental Counting Rule
- Factorial Rule
- Permutations Rule
- Permutations Rule when some items are identical to others
- Combinations Rule

Fundamental Counting Rule

- Event A can happen in " m " ways
- Event B can happen in " n " ways
- Then A and B can happen together in (m)(n) ways
- Examples

Fundamental Counting Rule Examples
 - Dice

-1st die can happen in 6 ways
-2nd die can happen in 6 ways
-the two dice can happen in (6)(6)=36 ways

- Birthday example

Factorial Rule

- If there are $\mathbf{N} \underline{\text { distinct items, they }}$ can be arranged in N ! different sequences
- Synonyms: sequences, orders, arrangements

Factorial Rule

- Calculator use for "factorials"

Permutations Rule

- There are \mathbf{N} distinct items
- You could form different distinct sequences of size " r " (sequence matters)
- How many?

$$
{ }_{n} P_{r}=\frac{N!}{(N-r)!}
$$

Permutations Rule

- Using the calculator function for "permutations"

Permutations Rule \#2

- You have N items made up of " k " groups, and within each group the items are not distinct.
- The \mathbf{N} items together can form this many distinct sequences:

$$
\frac{\mathrm{N}!}{\left(\mathrm{r}_{1}!\mathrm{r}_{2}!\cdots \mathrm{r}_{\mathrm{k}}!\right)}
$$

Combinations Rule

- There are \mathbf{N} distinct items
- You could form different combinations of size " r " for which the sequence does not matter
- How many? ${ }_{n} C_{r}=\frac{N!}{(N-r)!r!}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Combinations Rule

- Using the calculator function for "combinations"

