Statistics 1: Elementary Statistics

Section 4-4
Section 4-5

Probability

- Chapter 3
-Section 2: Fundamentals
-Section 3: Addition Rule
-Section 4: Multiplication Rule \#1 \qquad
-Section 5: Multiplication Rule \#2
-Section 6: Simulating Probabilities
-Section 7: Counting

Multiplication Rule \#1

- $P(A$ and $B)=$?
- Two rolls: $P(2$ and then 5$)=$?
-Two dice:
$\mathbf{P}($ sum <9 and both odd $)=$?

$P(A$ and $B)$

- Two rolls:
- A : first die is 2
- B : second die is 5
- $\mathbf{P}(\mathbf{A}$ and $B)=$?

	Value of Die \#1					
	1	2	3	4	5	6
	2	3	4	5	6	7
	3	4	5	6	7	8
	3	5	6	7	8	9
	4	6	7	8	9	10
	5	(7)	8	9	10	11
	7	8	9	10	11	12

$P(A$ and $B)$

- Circled event on last slide
- A : first die is 2
- B : second die is 5
- $\mathbf{P}(\mathbf{A}$ and B$)=1 / 36$

$P(A$ and $B)$

- Circled event on last slide
- A : first die is 2
- B : second die is 5
$P(A) \cdot P(B)=\left(\frac{1}{6}\right) \cdot\left(\frac{1}{6}\right)=\frac{1}{36}$

$P(A$ and $B)$

- Does this always work?

$$
\mathbf{P}(\mathbf{A} \text { and } \mathbf{B})=\mathbf{P}(\mathbf{A}) \cdot \mathbf{P}(\mathbf{B}) ?
$$

- Of course not - try the next problem using the two dice table.

$P(A$ and $B)$

- Two dice:
- $\mathrm{A}=$ sum <9
- $B=$ both are odd
- $\mathbf{P}(\mathrm{A})=$

26 events where sum is <9.

9 events where both are odd.

	Value of Die \#1					
	1	2	3	4	5	6
	(2)	3	4)	5	6	7
*	3	4	5	6	7	8
-	4	5	(6)	7	(8)	9
$\stackrel{\text { ¢ }}{ }$	5	6	7	8	9	10
$\stackrel{\sim}{3}$	5 (6)	7	8.	9	(10)	11
$\stackrel{\sim}{5}$	-7	8	9	10	11	12

But only 8 of these 9 events have sum < 9

In this case, it isclear that the
answer must be $\frac{8}{36}=0.222$
whichis not equal to
$\mathbf{P}(\mathbf{A}) \cdot \mathbf{P}(\mathbf{B})=\left[\frac{26}{36}\right]\left[\frac{9}{36}\right]=0.181$

To save the situation, we must use the formal multiplica tion rule :
$\mathbf{P}(\mathbf{A}$ and $\mathbf{B})=\mathbf{P}(\mathbf{A}) \cdot \mathbf{P}(\mathbf{B} \mid \mathbf{A})$
$=\frac{26}{36} \cdot \frac{8}{26}=\frac{8}{36}=0.222$

Conditional Probability

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})
$$

"probability of A given B" that is, B has happened or must happen

Start with the Multiplication Rule

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B} \mid \mathrm{A})
$$

or
\qquad
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A} \mid \mathrm{B})$
And rearrange it.

The Multiplication Rule rearranged

$$
\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\frac{\mathbf{P}(\mathbf{A} \text { and } \mathbf{B})}{\mathbf{P}(\mathbf{B})}
$$

or
$P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}$

Concept of "Independent" outcomes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

If event A does not alter the probability of event B, and vice \qquad versa, then A and B are "independent" and

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{A}) \\
& \mathbf{P}(\mathbf{B} \mid \mathbf{A})=\mathbf{P}(\mathbf{B})
\end{aligned}
$$

