Statistics 1: Elementary Statistics Section 4-4 Section 4-5

Probability

- Chapter 3
 - -Section 2: Fundamentals
 - -Section 3: Addition Rule
 - -Section 4: Multiplication Rule #1
 - -Section 5: Multiplication Rule #2
 - -Section 6: Simulating Probabilities
 - -Section 7: Counting

Multiplication Rule #1

- $P(A \underline{and} B) = ?$
 - -Two rolls: P(2 and then 5) = ?
 - -Two dice:
 - P(sum < 9 and both odd) = ?

P(A and B)

- Two rolls:
- A : first die is 2
- B : second die is 5
- **P**(**A** and **B**) = ?

		Va	lue of [Die #1		
	1	2	3	4	5	
ູ 1	2	3	4	5	6	7
. 2	3	4	5	6	7	5
5́3	4	5	6	7	8	Ę.
54	5	6	7	8	9	1
5	6	(7)	8	9	10	1
6	7	8	9	10	11	1:

$P(A \underline{and} B)$

- Circled event on last slide
- A : first die is 2
- B : second die is 5
- P(A and B) = 1 / 36

$P(A \underline{and} B)$

- Circled event on last slide
- A : first die is 2
- B : second die is 5

$$P(A) \times P(B) = \frac{ael}{c} \frac{\ddot{o}}{\dot{c}} \frac{ael}{\dot{c}} \frac{\ddot{o}}{\dot{c}} \frac{ael}{\dot{c}} \frac{\ddot{o}}{\dot{c}} = \frac{1}{36}$$

$P(A \underline{and} B)$

• Does this always work?

 $P(A \text{ and } B) = P(A) \times P(B)$?

• Of course not – try the next problem using the two dice table.

$P(A \underline{and} B)$

- Two dice:
- A = sum < 9
- B = both are odd
- **P**(**A**) =

	Value of Die #1								
	1	2	3	4	5	6			
_ 1	(2)	3	(4)	5	(6)	7			
# 2	3	4	5	6	7	8			
iā 3	(4)	5	(6)	7	(8)	9			
jo 4	5	6	7	8	9	10			
on 5	(6)	7	(8)	9	(10)	11			
o A	7	8	9	10	11	12			

In this case, it is clear that the
answer must be
$$\frac{8}{36} = 0.222$$

which is not equal to
 $P(A) \times P(B) = \frac{\cancel{626} \cancel{16} 9}{\cancel{636} \cancel{16} 36 \cancel{1}} = 0.181$

To save the situation, we must use the formal multiplica tion rule : $P(A \text{ and } B) = P(A) \times P(B | A)$ $= \frac{26}{36} \times \frac{8}{26} = \frac{8}{36} = 0.222$

Conditional Probability

P(A | B)

"probability of A given B" that is, B has happened or must happen

Start with the Multiplication Rule

 $P(A \text{ and } B) = P(A) \cdot P(B | A)$

or

 $P(A \text{ and } B) = P(B) \cdot P(A | B)$

And rearrange it.

The Multiplication Rule rearranged $P(A | B) = \frac{P(A \text{ and } B)}{P(B)}$ or $P(B | A) = \frac{P(A \text{ and } B)}{P(A)}$

> Concept of "Independent" outcomes

If event A does not alter the probability of event B, and vice versa, then A and B are "independent" and

P(A | B) = P(A)P(B | A) = P(B)