Statistics 1:
 Introduction to Probability and Statistics

Section 3-4

Measures of Position or Relative Standing
Where is this data value with respect to the other values in the population or in the sample?

Measures of position

- Z-scores
- Percentiles
\qquad

Measures of position

- Z-scores
-position with respect to mean -scale is in "sigmas;" the number of standard deviations away from the mean
z-score with sample statistics

$$
z=\frac{x-\bar{x}}{s}
$$

z-score with population parameters

$$
z=\underline{x-\mu}
$$

σ

z-score practice

- Given :
mean $=38$ and st. dev. $=6$
- If $x=28$, the \mathbf{z}-score $=$?
- If $x=42$, the z-score $=$?
- If $x=46$, the z-score $=$?

z-score practice

- Given :
mean $=38$ and st. dev. $=6$
- If $x=28$, the z-score $=\mathbf{- 1 . 6 7}$
- If $x=42$, the z-score $=\mathbf{0 . 6 7}$
- If $x=46$, the \mathbf{z}-score $=\mathbf{1 . 3 3}$

What makes a

 z-score "unusual"?- A z-score will be considered "unusual" if its absolute value is greater than 2.
- -3.44 is unusual
- 1.91 is not unusual
- 2.08 is unusual

Which z-score is the most "unusual" ?

- For the following z-scores,
- -1.67, 0.67, and 1.33,
- -1.67 is the most unusual, because $\mid-1.37$ | is biggest, or farthest away from the mean

Measures of position

- Percentiles

- position with respect to order in the sorted data set
- scale is percent
$-\mathbf{0 \%}$ to 100%.

The $\mathbf{k}^{\text {th }}$ Percentile; $\mathbf{P}_{\mathbf{k}}$

- P_{k} is the value that divides the lowest $k \%$ of the data from the highest $(100-k) \%$ of the data
- Easier said than done
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-

The $\mathbf{k}^{\text {th }}$ Percentile; \mathbf{P}_{k}

- Examples
- P_{30} is the value that divides the lowest 30% of the data from the highest 70% of the data
- \mathbf{P}_{70} divides the lowest 70% of the data from the highest 30% of the data
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Percentiles: problem \#1

- For a specified " x " value, determine what percentile it represents, that is, the percent (k) of the data that are less than " x ".
- $\mathbf{X}=\mathbf{P}_{\mathrm{k}}$

Problem \#1

Given x, what is k in P_{k} ?

$$
\begin{aligned}
& \begin{array}{c}
\text { N values }<\mathbf{X} \\
k=-------------100 \%
\end{array} \\
& \mathbf{N} \text { values total }
\end{aligned}
$$

The $\mathbf{k}^{\text {th }}$ Percentile; \mathbf{P}_{k}
Data in sorted order :
8,12,15,16,27
30,36,37,44,56
($\mathrm{n}=10$)

The $\mathbf{k}^{\text {th }}$ Percentile; \mathbf{P}_{k}
Data in sortedorder :
8,12,15,16, 27
30,36, 37,44,56
$\mathbf{P}_{70}=37$ because 7 out of $\mathbf{1 0}$ values are $<\mathbf{3 7}$

But why not do this?
N values > \mathbf{X}
$\mathrm{k}=[----------------]^{*} \mathbf{1 0 0} \%$
N values total

Problem \#2
 Given k, what value $=P_{k}$?
 $L=$ locationof P_{k} in the data $\mathbf{L}=\left(\frac{\mathbf{k}}{\mathbf{1 0 0}}\right) * \mathbf{n}$

Problem \#2

Given k, what value $=P_{k}$?
If L is not a whole number then round it UP!

Now, the value at location L in the sorteddata $=\mathbf{P}_{k}$

Problem \#2

Given k, what value $=P_{k}$? \qquad
If Lisa wholenumber, \qquad then $P=$ average of two \qquad values :
the value at locationL the value at locationL +1

The 70 ${ }^{\text {th }}$ Percentile; \mathbf{P}_{70}
8,12,15,16,27
30,36, 37,44,56
$L=\left(\frac{70}{100}\right) * 10=7$
Average $7^{\text {th }}$ and $8^{\text {th }}$ values
$\mathrm{P}_{70}=\mathbf{3 6 . 5}$

The 63 ${ }^{\text {rd }}$ Percentile; P_{63}
8,12,15,16, 27
30,36, 37, 44,56
$L=\left(\frac{63}{100}\right) * 10=6.3$
Round 6.3up to 7
$\mathbf{P}_{63}=36$

Percentile Aliases

- Deciles :
$-D_{1}, D_{2}, \ldots, D_{9}$
$-P_{10}, P_{20}, \ldots, P_{90}$
- Quartiles :
$-Q_{1}, Q_{2}, Q_{3}$
$-P_{25}, P_{50}, P_{75}$

Percentile Aliases

- Median, $\mathrm{D}_{5}, \mathrm{Q}_{2}$:
-all aliases for the 50th
percentile, \mathbf{P}_{50}

