Statistics 1: Introduction to Probability and Statistics

Section 3-4

Measures of Position or Relative Standing

Where is this data value with respect to the other values in the population or in the sample?

Measures of position

- Z-scores
- Percentiles

Measures of position

- Z-scores
 - -position with respect to mean
 - -scale is in "sigmas;" the number of standard deviations away from the mean

z-score with
population parameters
$$z = \frac{x - \mathbf{n}}{\mathbf{S}}$$

z-score practice

- Given :
 - mean = 38 and st. dev. = 6
- If x = 28, the z-score = ?
- If x = 42, the z-score = ?
- If x = 46, the z-score = ?

z-score practice

• Given :

mean = 38 and st. dev. = 6

- If x = 28, the z-score = 1.67
- If x = 42, the z-score = 0.67
- If x = 46, the z-score = 1.33

What makes a z-score "unusual" ?

- A z-score will be considered "unusual" if its absolute value is greater than 2.
- -3.44 is unusual
- 1.91 is not unusual
- 2.08 is unusual

Which z-score is the <u>most</u> "unusual"?

- For the following z-scores,
- -1.67, 0.67, and 1.33,
- -1.67 is the <u>most</u> unusual, because |-1.37| is biggest, or farthest away from the mean

Measures of position

- Percentiles
 - position with respect to order in the <u>sorted</u> data set
 - scale is percent
 - 0% to 100%.

The kth Percentile; P_k

- P_k is the value that divides the lowest k% of the data from the highest (100-k)% of the data
- Easier said than done

The kth Percentile; P_k

- Examples
- P₃₀ is the value that divides the lowest 30% of the data from the highest 70% of the data
- P₇₀ divides the lowest 70% of the data from the highest 30% of the data

Percentiles: problem #1

- For a specified "x" value, determine what percentile it represents, that is, the percent (k) of the data that are less than "x".
- $\mathbf{X} = \mathbf{P}_{\mathbf{k}}$

Problem #1 Given x, what is k in P_k?

N values < X k = [-----]*100% N values total

The kth Percentile; P_k

Data in sorted order : 8,12,15,16,27 30,36,37,44,56 (n = 10)

The kth Percentile; P_k Data in sorted order : 8,12,15,16,27 30,36,37,44,56 P₇₀ = 37 because 7 out of 10 values are < 37

But why not do this?

N values > X k = [-----]*100% N values total

Problem #2
Given k, what value =
$$P_k$$
?
L = location of P_k in the data
L = $\underbrace{\stackrel{\mathbf{ae}}{\mathbf{k}} \stackrel{\mathbf{o}}{\mathbf{b}}_{\mathbf{f}}}_{\mathbf{f}}$ n

Problem #2 Given k, what value = P_k ?

> If L is not a whole number then round it UP!

Now, the value at location L in the sorted data = P_k

Problem #2 Given k, what value = P_k? If L isa wholenumber, then P = average of two values : the value at locationL the value at locationL + 1 The 70th Percentile; P₇₀ 8, 12, 15, 16, 27 30, 36, 37, 44, 56 $L = \frac{ae70}{c} \frac{\ddot{o}}{100} \frac{\ddot{o}}{g} * 10 = 7$ Average 7th and 8th values P₇₀ = 36.5

The 63rd Percentile; P₆₃ 8, 12, 15, 16, 27 30, 36, 37, 44, 56 $L = \frac{ae63}{c} \frac{\ddot{o}}{\div} * 10 = 6.3$ Round 6.3 up to 7 P₆₃ = 36

Percentile Aliases

• Deciles :

$$-D_1, D_2, \dots, D_9$$

- $-P_{10}, P_{20}, \dots, P_{90}$
- Quartiles :
 - $-\mathbf{Q}_1$, \mathbf{Q}_2 , \mathbf{Q}_3
 - $-\,P_{25}\,,\,P_{50}\,,\,P_{75}$

Percentile Aliases

• Median, D₅ , Q₂ : -all aliases for the 50th percentile, P₅₀