Statistics 1:
 Introduction to Probability and Statistics

Section 3-3
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Three Statistics

 Describing Variation\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Range

- Not the Midrange (measure of \qquad the center) \qquad
- Difference between the largest and the smallest values
- Max - Min
- Uses only these two values

Standard Deviation

- Uses all of the data
- The characteristic measure of variability

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

Variance

- Square of the standard deviation

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}
$$

Mean and Variance

- Sum of squares is numerator in variance formula

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}
$$

- Mean makes $\sum(x-\bar{x})^{2}$ as small as it can be

Mean and Variance

- Mean makes the sum of squares as small as it can be

$$
\sum(x-\bar{x})^{2}
$$

- A value other than \bar{x} makes the sum of squares bigger

Meaning of the Standard Deviation

- What can you learn from the
- Range Rule?
- Empirical Rule?
- Chebyshev's Theorem?

Range Rule

- The standard deviation is approximately equal to the range divided by 4.
- Or, range is about (4)(σ)
- "Quick and Dirty" estimate

Range rule

$$
\sigma \cong \frac{\text { Range }}{4}=\frac{(\max -\min)}{4}
$$

Range rule

Range $\cong(\sigma)(4)$

Range rule
$\frac{\text { Range }}{\sigma}=4$

Bell-Shaped Distribution

Empirical Rule

- For "bell-shaped" distributions, approximately:
- 68% of values within $\mu+/-1 \sigma$
- 95\% of values within $\mu+/-2 \sigma$
- $\mathbf{9 9 . 7 \%}$ of values within $\mu+/-3 \sigma$

Chebyshev's Theorem

- For any distribution and for $k=2$ or more,
- The smallest possible percentage of the values that can lie within $\mu+/-\mathrm{k} \sigma$ is $\left(1-1 / k^{2}\right)$

Standard Deviation Problems

- Given :
- the mean is 100
- the standard deviation is 6
- bell-shaped distribution
- Estimate the proportion of data that lies between 88 and 112.

Standard Deviation
 Problems

\qquad

- Given :
- the mean is 100
- the standard deviation is 6
- What is the smallest percentage of values that could possibly lie between 82 and 118 ?

Standard Deviation Problems

- Given that the standard deviation is equal to 64, estimate the difference between the largest and the smallest value.

Standard Deviation Problems

- In a random sample of 40 values, the smallest value was 30 , the largest value was 430, and the standard deviation was 20. Do the results seem reasonable?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

