(4 points)

1. Shade in the area that corresponds to the probability statement, then determine the probability (picture is worth 2 points).

$$
X \sim U[10,20]
$$

What is the probability that a random X will be between 16 and 19 ?

$$
\begin{gathered}
P(16<x<19)=0.3 \\
\text { Prob }=\frac{d-c}{b-a}=\frac{19-1 b}{20-10}=1 / 10
\end{gathered}
$$

(5 points)
2. Shade in the area that corresponds to the probability statement, then determine the probability (picture is worth 2 points).

The random variable " X " is governed by the Uniform distribution on the interval [1,2].

What is the probability that a random X will be between 0.65 and 1.35 ?

$$
\begin{aligned}
& P(X<0.65 \text { or } A .355<x)=0.35 \\
& P_{\text {rob }}^{0.35}=\frac{d-c}{b-a}=\frac{1.35-1}{2-1}
\end{aligned}
$$

$$
=\frac{0.35}{1}=0.35
$$

(5 points)
3. Shade in the area that corresponds to the probability statement, then determine the probability (picture is worth 2 points).

$$
x \sim N(\mu=0, \sigma=1) \& \text { standard }
$$

What is the probability that a random X will be between - 0.44 and 1.83 ?

$$
P(-0.44<x<1.83)=0.6364
$$

(5 points)
4. Shade in the area that corresponds to the probability statement, then determine the probability (picture is worth 2 points). Normal

(c). $X \sim N(\mu=100, \sigma=13)$

What is the probability that a random X will be less than 118?

$$
1.38=
$$

$$
\frac{118-100}{13}=\frac{x-\mu}{\sigma}=z
$$

(6 points)
5. If the random variable X is distributed according to a normal distribution with mean (μ) equal to 83 and standard deviation (σ) equal to 14 , what is the $\mathbf{2 9}^{\text {th }}$ percentile $\left(\mathrm{P}_{29}\right)$ for the population?
(Picture is worth 2 points.)

(5 points)
6. If the random variable \mathbf{X} is distributed according to the standard normal distribution ($\mu=0$ and $\sigma=1$) what is the $\mathbf{7 0}^{\text {th }}$ percentile (P_{70}) for X ? (Picture is worth 2 points.)

