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Abstract 
 

The coefficient of multiple determination, commonly known as R2, is widely used in 

regression analysis. Frequently, practitioners observe R2 as a way to assess the usefulness 

of a particular regression model. In many instances, they are required to meet guidelines 

regarding “acceptable” values for R2 (e.g. greater than 80%). As we discuss here, such 

arbitrary guidelines may not be appropriate in practice. This paper addresses certain areas 

of misunderstanding with this important statistic. 

 

 

Introduction 

 

R2 is described in many textbooks dealing with regression analysis procedures. For 

further information see Hogg and Ledolter1 (1992) or a more detailed discussion in 

Draper and Smith2 (1981). Formally, we define R2 as representing the proportion of 

variation in the response that is explained by the regression model. Mathematically, the 

general form of this relationship is:  

R2   
SSTO

SSESSTO −=  

where SSTO is the total sum of squares in the response about the mean, and SSE is the 

sum of squares in the response about the regression line. Because the error in the 



regression (SSE) is non-negative and cannot exceed the error in the response (SSTO), R2 

varies between 0 and 1 (i.e. 0% to 100%). 

 

Two misconceptions regarding the use of R2 are: 

 

1. R2 is very large, so the regression model is useful for predicting new observations. 

2. R2 is small, therefore no meaningful relationships exist in the data. 

 

Misconception 1  

 

R2 is very large, so the regression model is useful for predicting new observations. 

 

R2 represents the proportion of variation in the sample data that is explained by the 

regression model. It is only an estimate of the proportion of variation in the population 

that is explained by the regression model. The accuracy of this estimate is greatly 

influenced by the technique used to select terms for the model. If the process used has a 

tendency to allow insignificant terms in the model (Type I error), then R2 will have a bias 

toward high values. If one or more Type I errors are made in the model selection process, 

the resulting regression model may fit the sample data very well, producing a high R2, yet 

it may not adequately fit future observations sampled from the population. Since future 

observations arise from the population, not the sample, a model with a high R2 value may 

not necessarily be useful for prediction purposes. Note that if the model selection process 



has a tendency to exclude significant terms (Type II error), then R2 will have a bias 

toward low values. 

 

Practitioners would be advised to avoid selecting a model based solely on the criterion of 

observing a high R2 value. This is especially true when many terms are included in a 

model to fit a relatively small number of observations. For the case when no repeat runs 

are used, R2 can reach the value of 1 (i.e. 100%) when we include the same number of 

terms as the number of dependent observations. In this situation, the practitioner would 

actually be modeling the error, in addition to any deterministic relationships that may 

exist. Such a model would therefore have little, if any, predictive ability (since error, by 

definition, cannot be predicted). 

 

Including too many terms in the regression equation is called “over-fitting” the model.  

To prevent a misinterpretation of R2, the results from the ANOVA table, as well as the 

R2-predicted statistic should be inspected. R2-predicted is useful for understanding the 

true predictive ability of a regression model.  

 

Example 1   

 

Consider the scatterplot of Y vs. X, in Figure 1. The Y-values were randomly generated, 

so there is no explicit relationship between X and Y. This is clearly illustrated by the 

noisy relationship exhibited between the two variables. 

 



 

 

To illustrate how one can draw erroneous conclusions by over-fitting, consider fitting the 

following model to the data: 

Y = εXβXβXββ 3
3

2
210 ++++ ,  

where ε is the random error component. As is shown in the regression plot in Figure 2, R2 

is equal to 71.3%. This is interpreted as the model explaining over 71% of the variation in 

Y. However, this value is primarily due to the high number of variables included in the 

regression model, in relation to the number of observations. 

 

The F-test in the ANOVA table (Figure 3) tests the null hypothesis, H0: 0βββ 321 ===  

vs. the alternative hypothesis, H1: not all jβ  = 0, where j = 1, 2, 3. As the p-value for this 

test is 0.398, there is not enough evidence to reject the null hypothesis at the α = 0.05 

significance level. In essence, we are unable to state that at least one of the regression 

coefficients is significantly different from zero (at the α = 0.05 level).   

 

A useful way to assess the ability of a model to fit future values is through R2-predicted.  

Like R2, the value of R2-predicted varies between 0 and 1. R2-predicted is different from 

R2 however, insofar as it assesses the variability in predicting new observations using the 

regression model. For a more detailed discussion of R2-predicted see Myers et al3 (2002).  

Note from Figure 3 that the R2-predicted value is roughly 0%, exhibiting the inability for 

this particular model to be used as a basis for future inferences. 

 



The high R2 value, along with what is visually a good fit of the regression line to the data 

can encourage such a misinterpretation. A model with a high R2 value may not be useful 

if there are no significant effects present (as is the case here) or if the R2-predicted value 

is small - especially if the model is to be used for prediction purposes. 

 

In conclusion, since the regression coefficients are determined from the sample data, a 

model that is solely capable of predicting the same data that was used to create it may be 

of little practical use.  Investigation of the parameters via the ANOVA table, and the R2-

predicted value may assist investigators in building an appropriate model. 

 

Misconception 2 

 
R2 is small, therefore no meaningful relationships exist in the data. 

 

The R2 statistic can be small, yet one or more of the regression coefficient p-values can 

be statistically significant. Such a relationship between predictors and the response may 

be very important, even though it may not explain a large amount of variation in the 

response.  

 

Example 2 

 

Taste test experiments are sometimes used to determine final ingredient combinations for 

a new product. Consider the following hypothetical situation. 

 



A taste test is conducted on two variations of a breakfast cereal. Consumers in a grocery 

store are randomly selected to participate in the test. Each of the 100 participants is asked 

to taste only one type of cereal (A or B), then score the cereal on many different attributes 

from 1 (extremely unfavorable) to 9 (extremely favorable). 

Assume that 80% of the tasters do not adequately complete the lengthy scoring process. 

At some point during their evaluations, they begin providing random answers to the 

questions.  We further assume that of this 80%, half of them tasted A, the other half B. 

 

The scores from the participants who “correctly” completed the entire scoring process 

reveal that the 10% of the participants who tasted cereal A gave a lower average score 

than the 10% who tasted cereal B. 

The random samples in this example were simulated as follows:  

• Scores for the 80% of participants who answered randomly are from a normal (µ = 5, 

σ = 1) distribution 

• Scores for the 10% of participants who “correctly” evaluated cereal A are from a 

normal (µ = 4, σ = 1) distribution 

• Scores for the 10% of participants who “correctly” evaluated cereal B are from a 

normal (µ = 6, σ = 1) distribution 

A statistically significant difference may exist between the two cereals at the α = 0.05 

significance level, in spite of the low R2 value. This is true for the simulated data, as 

shown in Figures 4 and 5 where the p-value (0.045) is less than α (0.05), and R2 = 4.1%. 

 



 

 

The low R2 value reflects the high level of variation in the scores of the tasters who 

randomly guessed. Regardless of the higher variation, the results from this analysis 

indicate (correctly) that cereal B is preferred and would likely result in increased sales 

over cereal A. 

 

Many other real-world occurrences can lead to lower values of R2, though significant 

effects that have practical importance may be present. Examples include situations 

involving high levels of measurement error, or wide variation reflecting consumer 

behavior (as in economic data). 

In addition, as with misconception 1, it is important to note that R2 is reflecting variation 

solely obtained from the sampled data. If the data exhibit an inflated error that does not 

represent the true level of variation present in the overall population (e.g. due to incorrect 

sampling techniques), R2 can be low, while meaningful relationships may still exist.  

 

Conclusion 

 

We have dealt with two instances in which the assessment of R2 may lead to invalid 

conclusions. It is the responsibility of the analyst to recognize when to disregard a high 

R2 value due to “over-fitting” the model, and to disregard a low R2 value due to large 

error in the sampled data. Furthermore, these two misconceptions point out why 



establishing a threshold or cut-off point for an “acceptable” value of R2 across all 

applications is inappropriate. 
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