Statistics 300:
Introduction to Probability and Statistics
Summer 2016 Day Class
Cosumnes College

Instructor: L.C. Larsen

Instructions

Time: 2 hours and 10 minutes
Date: 28-Jul-16

Materials: Open book, notes, homework, quiz sets, example problems, study guides, etc.

Instruments: Calculator/tablet/Laptop of student's choice

No phone calls or consultants except for questiods addressed to the instructor.

Answers to confidence interval problems must include the expression (the formula) in symbolic form and the expression with all of the values inserted in the proper places. Then, the final answer can be calculated by any method or device.

Unless a p-value is given in the problem, each hypothesis test problem must include all four parts of the traditional approach to hypothesis tests, including the expression (the formula) for the test statistic in symbolic form and the expression with the values in the right places. The result can then be calculated by whatever method you like (TI-83, laptop computer, etc.).

If a p-value is given in the problem, the conclusion must be based on a proper comparison of the p-value to the significance level.

If more space is needed for a problem, continue your work on the back of the page.
(9 points; 9 minutes)

1. Use the data below to make a 98% confidence interval for the difference between the proportion of people in New York that say they "mainly use public transit" and the proportion of people in Chicago that say they "mainly use public transit".

City	I mainly use public transit	
	Yes	No
New York	730	270
Los Angeles	230	770
Chicago	675	325

Based on your confidence interval, is it reasonable to claim that "The proportion of New York residents that mainly use public transit is the same as the proportion of Chicago residents that mainly use public transit" ?

Yes No Why?
(8 points; 8 minutes)
2. Use the data shown in the table to test the claim that the time (hours) needed for paint to dry is negatively correlated with temperature.
(Let $\alpha=0.025$ for this test.)

Temperature ${ }^{\circ} \mathrm{C}$	Hours Needed to Dry Paint
5	41
10	35
15	28
20	31
25	27

H_{0} : \qquad
H_{1} : \qquad
(10 points; 10 minutes)
3. Cancer patients were treated with two anti-cancer drugs: Drug A and Drug B. Use the results shown in the table to test the hypothesis that the two drugs are equally effective in curing cancer, so the percent of patients cured is the same.
(Use a 10% significance level for this test.)

$\mathrm{H}_{0}: \ldots \quad$| Response of Cancer Patients | | |
| :---: | :---: | :---: |
| | | Drug A |
| Cured | 291 | Drug B |
| Not Cured | 119 | 219 |
| Total | 410 | 226 |

(9 points; 9 minutes)
4. Pollutants in the water from the City water treatment plant are measured in samples taken during the Spring (May) and Summer (August). Use the statistics given here to make a 95\% confidence interval for the difference between the the population mean for pollutant measurments in May and the population mean for pollutant measurementsin August. The variation in May measurements is similar to the variation in August measurements.

Amount of Pollutants		
Sample Statistics	Month	
$\mathrm{N}=$	18	14
Average $=$	78	84
Std. Deviation $=$	11	10

Based on your interval is it reasonable to say that the average amount of pollutant in the water in May is $\mathbf{7 4}$ and the average amount of pollutant in the water in August is $\mathbf{8 8}$?

Yes
Why?
No
(13 points; 13 minutes)
5. Plot the appropriate test scores as points (score A as X, and score C as Y) on the graph axes.

Each row in the dataset is for a different person. Then answer parts $\mathbf{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$, and g .

Person	Exam Scores		
	A	B	C
1	90	84	100
2	78	70	78
3	73	82	62
4	59	52	48
5	38	35	40
6	50	42	65
7	98	92	98

(a) Plot the points on the graph.

(b) Use your calculator to determine the equation of the line that best predicts the Test C score based on a known score for Test A.

Equation of your line : \qquad
(c) Plot your line on the graph.
(d) What is the linear correlation between the scores for Test A and Test C?
(e) Provide the symbolic expressions for Total, Explained, and Unexplained variation in "Y".

(f) Provide the values for Total, Explained, and Unexplained variation in " Y " for the graphed data.

(g) Provide the symbolic expression and the value for the Standard Error of Estimate.

[^0]Value
\qquad
(9 points; 10 minutes)
6. Random samples of $\mathbf{6 0 0}$ people from three age groups were asked what size of car they drove -- Large, Medium, or Small. Use the data below to test the claim that all people in the three age-groups drive Large, Medium, and Small cars in the same proportions. (Use a 0.025 significance level for this test.)

Age Group	Size of Car			Row Total
	Large	Medium	Small	
<30	142	206	252	600
30 to 40	150	220	230	600
>40	218	180	202	600
Col. Total	510	606	684	1800

Claim:
H_{0} :
H_{1} :
(9 points; 10 minutes)
7. A City studied the effects of visible police presence on average driving speed. Use the data below to test the claim that the average driving speed is more than five miles per hour faster when police are not visibly present compared to when police are visibly present. Variability in driving speeds increases when police are not visibly present. (Treat the data as "simple random samples", and let $\alpha=5 \%$.)

Hourly Values for Driving Speed with Police "Visible" and "Not Visible"		
Sample Statistic	Visible	Not
$n=$	31	21
mean $=$	66.4 mph	72.8 mph
st. dev. $=$	3.4 mph	5.2 mph

Claim:

\qquad
H_{0} : \qquad
H_{1} : \qquad
\qquad
(6 points; 6 minutes)
8. Connect each picture with one of the candidate correlation (\mathbf{r}) values by writing the appropriate candidate " r " value in the space at the top of each graph.

Candidate values of "r", the sample correlation coefficient.							
0.00	-0.50	-0.90	-1.00	0.50	0.90	1.00	2.00

Name:
(9 points; 7 minutes)
10. The Analysis of Variance table below is based on the 304 data values on the next page. Complete the AOV table and test the claim that types of glass made by ten different makers of windows lose the same average amount of energy. Use a $\mathbf{2 \%}$ significance level for the test based on the p-value approach to hypothesis testing.

AOV Table

| | Sum of
 Source | Squares | df | Mean
 Square | F |
| :--- | :---: | :---: | :---: | :---: | :---: | p-value | Sroducers | 544 | | | 0.099718 |
| :--- | :---: | :--- | :--- | :--- |

Error

Total 11288

$$
\mathrm{H}_{0}:
$$

H_{1} :

Energy losses through windows made from 10 different types of glass
Type_1 Type_2 Type_3 Type_4 Type_5 Type_6 Type_7 Type_8 Type_9 Type_10

96	92	107	99	102	95	103	102	93	98
88	97	102	101	92	109	95	98	106	107
107	101	110	99	109	94	93	105	110	106
100	106	103	108	93	90	94	94	102	90
96	106	108	104	107	110	95	107	99	95
90	97	97	102	110	105	98	106	99	91
91	97	101	98	94	98	90	100	104	98
93	93	95	102	103	94	105	98	106	93
91	104	99	105	100	99	98	92	108	101
97	106	105	92	97	108	97	101	102	109
98	93	99	90	90	92	105	90	104	104
90	98	105	99	90	95	110	100	91	99
95	99	90	99	107	98	100	104	90	93
96	93	110	109	102	109	108	105	99	92
99	96	102	91	105	97	96	93	97	93
106	101	92	96	100	92	90	105	99	99
90	104	93	100	98	93	97	95	90	95
89	92	110	90	103	92	106	103	110	99
99	98	92	98	109	108	101	102	96	103
89	98	91	96	94	93	108	95	93	92
103	106	95	108	103	96	110	103	90	90
100	110	108	105	93	102	96	106	97	93
103	109	90	91	108	101	95	93	108	92
94	95	99	93		109	98	91	110	105
101	94	95	96		100	109	102	106	96
102	105	102	96		93	96	91	108	
94	101	110	108		104	104	103	110	
93	107	93	108		95	95	108	94	
95	109	95	110		97	96	99	102	
94	104	108	105		104	99	105	92	
105	103	96				110	101		
101	99	98				107	91		
	90					105			
	104					108			
	100					101			
32	35	32	30	23	30	35	32	30	25
96.4	100.2	100.0	99.9	100.4	99.1	100.5	99.6	100.5	97.3
5.4	5.6	6.6	6.1	6.5	6.3	6.0	5.5	6.8	5.7

\qquad
(8 points; 8 minutes)
11. A local newspaper surveyed 900 likely voters and asked each person how likely they were to vote for the candidate currently representing their district. Use the data below to test the claim that the proportions today are the same as the proportions from another taken before the previous election for district representative. Let $\alpha=0.05$.

Results of current election survey		Last Survey
Very Likely	284	32%
Somewhat Likely	308	27%
Equally Likely and Unlikely	100	12%
Somewhat Unlikely	120	18%
Very Unlikely	88	11%
Total		900

H_{0} : \qquad
\qquad
H_{1} : \qquad

[^0]: Symbolic Expression

