(8 points)
5. A study included 200 men and 280 women to see whether people differ by gender in their sensitivity to smells. Use the data to test to claim that the proportion of sensitive women is greater than the proportion of sensitive men. Do not analyze this as a contingency table. (Use $\alpha=0.05$ for this test.)

Test Statistic (with \bar{p})

$$
\frac{\left(\hat{p}_{w}-\hat{p}_{m}\right)-0}{\sqrt{\frac{\bar{p} \bar{q}}{n_{w}}+\frac{\bar{p} q}{n_{m}}}}
$$

$$
=\frac{(0.15-0.10)-0}{\sqrt{\frac{(0.1292)(0.8708)}{280}+\frac{(0.1292)(0.8708)}{200}}}=\frac{0.05}{0.0311}=1.61
$$

(8 points)
5. A study included 200 men and 280 women to see whether people differ by gender in their sensitivity to smells. Use the data to test to claim that the proportion of sensitive women is 0.02 greater than the proportion of sensitive men. Do not do this as a contingency table.
(Use $\alpha=0.05$ for this test.)

Gender	Men	Women
Sensitive	20	42
Insensitive	180	238
Total	200	280
$\hat{p}_{m}=20 / 200$	$\hat{P}_{W}=\frac{42}{238}$	
	$=0.10$	$=0.15$
$\hat{q}_{m}=0.90$	$\hat{q}_{W}=0.85$	
$\eta_{m}=200$	$\eta_{W}=280$	

$$
\begin{gathered}
\text { claim: } P_{w}=P_{m}+0.02 \\
\left(P_{w}-P_{m}\right)=0.02 \\
H_{0}:\left(P_{w}-P_{m}\right)=0.02 \\
H_{1}:\left(P_{w}-P_{m}\right) \neq 0.02 \\
\alpha=0.052 \text { tails }
\end{gathered}
$$

test statistic (no turing \bar{p})

$$
\frac{\left(\hat{p}_{w}-\hat{p}_{m}\right)-\left(p_{w}-p_{m}\right)_{0}}{\sqrt{\frac{\hat{p}_{w} \hat{q}_{w}}{\hat{n}_{w}}+\frac{\hat{p}_{m} \hat{q}_{m}}{\hat{n}_{m}}}}
$$

$$
=\frac{(0.15-0.10)-0.02}{\sqrt{\frac{(0.15)(0.85)}{280}+\frac{(0.10)(0.90)}{200}}}=\frac{0.03}{0.030}=1.00
$$

(8 points; 8 minutes)

1. A random sample of incoming freshmen was selected. Of the men, 22 chose sociology as a major and 191 did not. Of the women, 38 chose sociology and 219 did not. Use these results to prepare a 95% confidence interval for the difference in the proportions of all incoming men and women that will choose sociology as their major. Then use your results to answer this question:

Is it reasonable to claim that women and men choose Sociology in the same proportion?

YES NO Why?
If women and men choose socidogg in the same proportion, then the difference $\left(p_{m}-p_{w}\right)=0$, which is in the nasonable range.

$$
\begin{aligned}
& 95 \% \text { CI }\left(p_{m}-p_{w}\right)=\left(\hat{p}_{m}-\hat{p}_{w}\right) \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{m} \hat{q}_{m}}{n_{m}}+\frac{\hat{p}_{\omega} \hat{q}_{w}}{n_{w}}} \\
& \hat{p}_{m}=\frac{22}{(22+191)}=\frac{22}{213} \\
& =0.1033 \\
& \hat{q}_{m}=0.8967 \\
& n_{m}=213 \\
& \hat{\theta}_{w}=\frac{38}{257}=0.1479 \\
& \hat{q}_{w}=0.8521 \\
& n_{\omega}=257 \\
& \alpha=1-\text { contd } \\
& =1-0.95 \\
& =0.05 \text {. } \\
& 2 \text { tails. } \\
& =(0.1033-0.1479) \pm \\
& 1.96 \sqrt{\frac{(.1033)(.8967)}{213}+\frac{(.1479)(.8521)}{257}} \\
& =(-0.0446) \pm 0.0596 \\
& =-0.1042<\left(\oplus_{m}-P_{w}\right)<0.015 \\
& \text { The confidence interval } \\
& \text { is the "reassmable rams } \\
& \text { for the true difference } \\
& \left(P_{n}-P_{W}\right) \text { 。 } \\
& z_{\alpha_{p_{2}}}=1.96
\end{aligned}
$$

(8 points - 10 minutes)

1. The data at the right represent two different acid treatments in an indistrial process. Use the information to construct a 98% confidence interval for $\mu_{1}-\mu_{2}$.
(Assume that $\sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$)

Treat.	Mean	Std. Dev.	N
Acid 1	11.620	1.185	10
Acid 2	10.865	1.117	14

since $\left(\sigma_{1}^{2}=\sigma_{2}^{2}\right)$, do 2 things:
(1) pool the variances $\Rightarrow s_{p}^{2}$
(2) add the degrees of freedom

$$
\begin{aligned}
S_{p}^{2} & =\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)} \\
& =\frac{(10-1)(1.185)^{2}+(14-1)(1.117)^{2}}{(10-1)+(14-1)} \\
& =1.312
\end{aligned}
$$

$$
d f=(10-1)+(14-1)=22
$$

$\alpha=1-$ confidence

$$
=1-0.98=0,02
$$

in 2 tails

$$
\begin{aligned}
& t_{\alpha / 2}=2.508 \\
& 22 \text { d.f. }
\end{aligned}
$$

$$
\begin{aligned}
& =0.755 \pm 1.189 \\
& \left.=\left[-0.434<\mu_{1}-\mu_{2}\right)<1.944\right]
\end{aligned}
$$

(7 points; 8 minutes)
11. A manufacturer of ceramic tiles compares two different curing temperatures to see which one makes the tiles stronger. Use the test data below to construct a 95% confidence interval for the difference between the population mean for 800 degrees and the population mean for 1200 degrees. Experts advise you that the temperature difference is likely to cause a difference in the variability of the strength of the bricks.

Tile Strength At Temperature	
800	1200
85	105
109	105
82	103
89	100
106	102
118	102
99	107
104	113
	100

$$
\begin{aligned}
& \bar{x}=99.000 \quad 104.111 \\
& s=12.649 \quad 4.076 \\
& \mathrm{n}=8 \quad 9 \\
& d f=\frac{\square}{\square} \frac{8 \pi}{8} \\
& \text { def. } \\
& \alpha=1-0,95 \\
& \begin{array}{l}
=0.05 \\
\text { in } 2 \mathrm{tai} / \mathrm{s}
\end{array} \\
& t_{\alpha / 2}=2.365
\end{aligned}
$$

$$
\begin{aligned}
& 95 \% \in \pm\left(\mu_{1200}-\mu_{800}\right)= \\
& \left(\bar{x}_{1200}-\bar{x}_{800}\right) \pm t_{\alpha / 2} \sqrt{\frac{S_{1200}^{2}}{n_{1200}}+\frac{S_{800}^{2}}{n_{800}}} \\
& =\left(\frac{(104,111-99.000) \pm}{2.365 \sqrt{\frac{(4.076)^{2}}{9}+\frac{(12.649}{8}}}\right. \\
& =5.111 \pm 11.05
\end{aligned}
$$

$$
=\left[-5.94<\left(\mu_{1200}-\mu_{800}\right)<16.16\right]
$$

6. Use the data below to construct a 90% confidence interval for the difference between the two population means from which the random samples were selected. Previous experiments have shown that the variability in Vitamin D levels is similar for both men and women.

Based on your results, is it reasonable to claim that men in general have more vitamin D in their blood than women do? For credit, you must explain why?

(8 points - 10 minutes)
2. Use the information given here to test the claim that hot treatments require one more day for recovery on average than cold treatments. Use a significance level of 0.05 for this test.
(Assume that $\sigma_{1}{ }^{2}$ is not equal to $\sigma_{2}{ }^{2}$)

$$
\theta_{1}^{2} \neq \sigma_{2}^{2}, \quad \text { so }
$$

(1) do not pool variances
(2) use the smaller of the two deg, if keedom cham: $\mu_{H}=\mu_{c}+1$
$\left(\mu_{H}-\mu_{c}\right)=1$
$H_{0}:\left(\mu_{H}-\mu_{c}\right)=1$

critical region

$$
\begin{aligned}
& \text { Do Not } \\
& \text { reject Ho: }
\end{aligned}
$$

$$
=\frac{(11.4-13.4)-1}{\sqrt{\frac{(4.60)^{2}}{8}+\frac{(4.35)^{2}}{10}}}=\frac{-3}{2.13}=-\frac{1}{-1.408}
$$

(8 points : 12 minutres)

1. Do carpool lanes save commute time?

Transportation planners want to know whether carpool lanes save time for commuters. An experiment was carried out using 14 commuters who do not carpool and 11 commuters who do carpool. Use the summary of the survey results below to test the claim that carpool use does NOT save time, so the mean commute time for carpoolers is greater than or equal to the mean time for those who do not carpool. (Use $\alpha=0.01$ for the test and assume that variation is similar for both populations.)

Test Statistic

$=\frac{(41,0-44.8)-0}{\sqrt{\frac{209.3}{11}+\frac{209.3}{14}}}$

$$
=\frac{-3.8}{5.83}=\frac{-0.652}{L}
$$

(1) Pool variances
(2) add degrees of freedom

$$
\begin{aligned}
S_{p}^{2} & =\frac{\left(n_{R}-1\right) S_{R}^{2}+\left(n_{c}-1\right) S_{c}^{2}}{\left(n_{R}-1\right)+\left(n_{c}-1\right)} \\
& =\frac{(14-1)(15.1)^{2}+(11-1)(13.6)^{2}}{(14-1)+(11-1)} \\
& =209.3
\end{aligned}
$$

$$
\operatorname{claim}: \mu_{c} \geqslant \mu_{R}:\left(\mu_{c}-\mu_{R}\right) \geq_{0}
$$

$H_{0}:\left(\mu_{c}-\mu_{R}\right) \geqslant 0$
$H_{1}:\left(\mu_{c}-\mu_{R}\right)<0$
$\alpha=0.01$ left tail 23 dif ,
critical region

(6 points - 8 minutes)
5. Use the information given here to test the hypothesis that the two samples (X and Y) come from "populations" for which σ_{x}^{2} is greater than σ_{y}^{2}. test: $\sigma_{x}^{2}>\sigma_{y}^{2}$
(Use $\alpha=0.025)$ (Use $\alpha=0.025$) ${ }^{2}$

$\alpha=0.025$, All in the tail.

(7 points; 8 minutes)
7. A produce manager at a super market wants to compare the uniformity of grapes from two suppliers. The manager takes a random sample of grapes from each supplier and tests the grapes for their sugar content. Use the results shown below to test the claim that grapes from supplier A are more uniform (less variable) sugar content than grapes than grapes from supplier B. (Use a 0.05 significance level.)

Supplier	
A	B
6.92	3.71
3.75	3.94
8.95	2.45
3.91	2.66
8.35	3.96
1.63	9.49
4.99	6.38
9.04	5.78
	8.86

α all in the
one tail

$$
\begin{array}{rll}
-x= & 5.943 & 5.248 \\
s= & 2.773 & 2.571 \\
n= & 8 & 9 \\
d f & =7 & 8 \\
\text { (Namer) } & \text { (denom) }
\end{array}
$$

(8 points - 8 minutes)

8. For each of the correlation coefficients given below, enter the letter of a graph from the following pages that best corresponds to the given correlation value.

There may be NONE or, perhaps, MORE THAN ONE GRAPH for any correlation.

Correlation Coefficient	Corresponding Graph
$\rho=1.0$	D and I
$\rho=-0.70$	E
$\rho=0.90$	C
$\rho=0.70$	F
$\rho=-0.50$	H

Correlation Coefficient	Corresponding Graph
$\rho=-0.90$	J
$\rho=0.50$	G
$\rho=0.00$	A and B
$\rho=5.32$	
None	

B

C

D

E
F

$$
r=+1
$$

8. Assign one of the following correlation coefficients to each of the graphs to the right. (or state $r=$ none if no correlation coefficient seems appropriate for a graph)

(3 points, 5 minutes)
9. Assign one of the following correlation coefficients to each of the graphs to the right. (or state $r=$ none if no correlation coefficient seems appropriate for a graph)

(3 points, 5 minutes)
10. Assign one of the following correlation coefficients to each of the graphs to the right.
(or state $r=$ none if no correlation coefficient seems appropriate for a graph)

(8 points)
3. Use the data provided below to test the claim that the population correlation (ρ) between vehicle speed (X) and miles per gallon (Y) is less than zero. Assume the data are randomly selected. (Use $\alpha=0.01$ and do not use Table A.6)

(7 points; 8 minutes)
2. Market research concerning spending patterns found a sample correlation of 0.73 between $X=$ purchase price of house and $Y=$ purchase price of automobile for a sample of 10 families. Use these results to test the claim that the prices paid for houses and cars are positively correlated for the population of all families. (Use a 0.10 significance level for this test.)

$$
\begin{aligned}
& n=10 \quad d f=n-2=8 \\
& r=0.73
\end{aligned}
$$

Test Statistic

$$
\begin{aligned}
t & =\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}} \\
& =\sqrt{\frac{0.73}{1-(0.73)^{2}}} \\
& =\frac{0.73}{0.2416}=3.022
\end{aligned}
$$

(10 points - 15 minutes)
10. Use the data given below to answer questions (a) through (i).

Test	(X) Fertilizer Applied Area $(\mathrm{Kg} / \mathrm{Ha})$	(Y) Harvested Grain $(\mathrm{Kg} / \mathrm{Ha})$
1	0	540
2	10	610
3	20	1018
4	40	1420
5	80	1548
6	120	1731

(a) Plot the data on the coordinate axes.
(b) Determine the equation of the regression

line and write in the space to the right:

(c) If a farmer used 30 Kg of fertilizer per hectare, how much grain should be expected?

$$
=701.6+9.84(30)=997
$$

(d) What is the linear correlation between fertilizer applied and grain harvested?

(e) What is the value of the total variation in Y , the amounts of grain harvested?

$$
=S_{y}^{2}(n-1)
$$

1249807.5

(g) What is the value of the explained variation in Y ?

$$
1041089.6=r^{2}(\text { total })
$$

(14 points - 15 minutes)

4. Use the data shown for vehicle weight and fuel efficiency (miles per gallon of fuel) to answer the following questions.

Data: Fuel Efficiency Weight
Vehicle (mpg) (lbs)

1	41.7	1009
2	20.1	3275
3	24.0	3148
4	31.4	1269
5	32.9	1578
6	43.4	1206

(a) Plot the points on the graph
(b) What is the equation for the straight line that best predicts fuel efficiency (y) given vehicle weight (x)?
(c) Plot the line on the graph.

your
(d) Based on your results, what is the predicted fuel efficiency for a vehicle that weighs 2500 lbs?

$$
\hat{y}=47.94-0.0082(2500)
$$

\qquad

$$
\left(\begin{array}{l}
\hat{y} \mid x=2500)=27.45
\end{array}\right.
$$

(e) What proportion of the total variation in Y does your line explain?

(f) For the total variation in fuel efficiency (Y):

The expression is:
 The value is: $430.455=S_{y}^{2}(n-1)$
(g) For the explained variation in fuel efficiency (Y):

The expression is:

The value is:

(h) For the unexplained variation in fuel efficiency (Y):

The expression is:
 The value is: $79.271=$
total-iplained
(i) For the Standard error of estimate:

The value is: \qquad
The expression is:

$$
\frac{79.271}{6-2}=4.452
$$

(8 points - 10 minutes)
4. A chain of shoe stores compares the sales for different shoe styles at their NEW California stores to the proportions during the last ten years at their New York stores. Use the data for 400 randomly selected sales in California to test the claim than California consumers buy the same styles of shoes in the same proportions as people in New York. (Use a Type I error rate of 0.05 for this test)

$$
N=400
$$

H_{0} : CA consumers by shoes
of the same styles in the same proportions as do Ny consumers.
H: Not so!
$\alpha=0.05$ right tail of
X^{2} distribution with 6-1 def. $=5 \mathrm{~d} . f$.

(10 points - 15 minutes)
3. The proportions of people in the U.S. that prefer 5 different kinds of entertainment are shown in the table below. A local survey of 500 people found 60 people who prefer movies, 200 who prefer to watch TV, 90 who like to listen to music, 30 who prefer dancing, and 120 that prefer to play sports. Test the claim that the true local proportions are the same as the national rates. (Use a 0.05 significance level for the test)

(8 points)
7. A company that markets sodas does a survey of consumer preferences. Use the data to test whether the two age-groups (in general, not these specific individuals) have the same proportions that prefer each soda. (use $\alpha=0.025$ for the test)

Counts in categories
arranged according to mare than one factor: "contingency table"
claim: the two age groups pup the different
sodas in the same proportions.

15	12.5	12.5
15	12.5	12.5

$$
(O-E)^{2} / E
$$

1.67	0.5	0.5
1.67	0.5	0.5

critical region

Do not reject H_{0} :
(8 points -10 minutes)
11. Use the data in the contingency table to test the claim that 2-year old boys and girls choose toys in the same proportions when placed in an observation room. (Use $\alpha=0.05$ for this test)

Toy chosen	Gender		Total
	Boys	Girls	
Ball	40	20	60
Doll	5	25	30
Bell	5	5	10
Total	50	50	100

Expected $=\frac{(\text { now total) (col, total) }}{\text { grand total }}$

claim: gits and boys choose the different toys. in the same proportions
H_{0} : homogeneous proportions
H_{1} : not H_{0} :
$\alpha=0.05$ right tail
$d f=(r-1)(c-1)=(3-1)(2-1)=2$
critical (hi-square value $=5.991$

4. Use the data in the table to test the idea that the use of some "slang" terms is independent of age. The data represent a stratified random sample of 400 people from Los Angeles.
(Use $\alpha=0.025$ for this test)
counts in categories arranged according to more than one factor. "contingency tab"

The Idea (claim): Slang usage and age group ore independent

Most used Slang Term	10 to 20	21 to 40	41 to 60	>60	Total
I'm like \ldots	90	50	10	0	150
totally	10	40	40	10	100
far out	0	10	50	90	150
Total	100	100	100	100	400

H_{0} : in dependence of the
Expected Counts =
(row total) (colum total)
grand total
H_{i} : dependence.

$$
\begin{aligned}
\alpha & =0.025 \text { night tail } \\
d f=(r-1)(c-1) & =(3-1)(4-1) \\
& =6
\end{aligned}
$$

critical Chi-squar value $=14.444$

37.5	37.5	37.5	37.5
25	25	25	25
37.5	37.5	37.5	37.5

(7 points - 8 minutes)
6. Based on the data below, complete the Analysis of Variance Table by filling in the missing values. (Use $\alpha=0.01$ for the appropriate hypothesis test.)

$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$ H_{1} : at least one μ is Not $\alpha=0.01$ Night tail Fdistribution with 3 of for Numerator 16 af for denominator critical F is not avoulable in tables, but p-value is given, so

(8 points: 10 minutes)
2. The Mayor of a city claims that the total fees paid by residents of similar sized cities are the same throughout the United States. Random samples of 20 residents in 26 cities of similar size are selected and the total fees they paid are determined (the data are on the following page).
Use the data (as you may need to) to complete the analysis of variance table below.
Then carry out a test of the Mayor's claim that average fees are the same for all 26 cities.
(Use a significance level of 0.04 for this test.)

Analysis of Variance Table

	Degrees of Freedom	Sum of Squares	Mean Square	F	p-value
Cities	25	11557	462.28	1.713	0.0179
Error	494	133329	269.90		
Total	$5 / 9$	144886			

$$
N=(26)(20)=520
$$

H_{0} : means (μ) for all the same for aries of this size
H_{1} : Not H_{0} :
$\alpha=0.04$ right tail
Fdistribution.
critical F value
Not available in
tables, but 0-value
is given
p-value $=0.0179$
which is loss than

Data on fees paid for 20 randomly selected residents in 26 cities in the U.S.

Fees paid									
\$1	\$126.49	\$161.81	\$148.41	8.40	\$141.25	\$134.99	\$139.89	\$145.46	
\$154.02	\$131.30	\$134.11	\$139.18	\$125.14	\$143.82	\$140.38	55.78	. 53	4
\$174.82	\$115.38	\$140.20	\$166.08	\$160.67	\$130.64	\$117.01			
\$146.97	\$145.57	\$145.56	\$128.07	\$146.04	\$129.74	\$112.15	65		
\$170.20	37	\$167.76	148.62	\$169.98	\$108.22	\$170.23		\$100.33	-
\$143.01	\$154.64	\$135.23	\$80.95	\$144.34	\$126.15	\$150.19			
\$143	\$144.91	\$159.57	\$152.24	\$134.45	\$98.63	9	\$93.49		
\$135.65	\$123.39	\$123.76	\$159.54	\$113.87	\$128.78	\$131.95	\$108.60	93	
\$161.80	\$134.43	118.22	90	90	\$125.09			\$103.25	
\$127.42	\$113.80	\$140.49	\$136.08	\$134.48	140.46	\$124.76	53	8	
6 \$120.99	\$135.35	\$133.74	\$116.80	144.35	111.99	\$125.01		2	
\$138.17	\$123.86	\$146.14	\$141.48	\$113.36	1	. 05	24	\$130.12	
\$		\$154.10	\$166.55	172.91	\$137.92	8	6		
\$1	\$128.53	\$127.27	\$90.94	\$130.65	\$150.87	\$126.26	5		136.99
\$146.92	\$123.72	\$140.98	\$129	59	18		33	\$106.14	121.49
	135.30	\$140.59	\$144.42	135.05	\$127.75	\$139.47	\$123.95	\$129.57	87
\$158.63	\$126.17	\$134.10	\$129.84	50	\$168.41	\$149.36			43
\$133.30	\$151.93	\$151.12	\$138.21	\$147.95	\$118.56	\$132.98	23		
\$	\$106.55	\$159.60	\$141.61	\$105.70	\$118.50	87	54	20	
\$12	\$147.72	\$138.37	\$123.15	\$133.94	\$131.84	\$117.57	\$182.01		38
\$1	\$121.61	\$127.39	\$139.00	\$144.95	\$136.60	\$115.61	8	\$148.33	
\$1	\$98.85	\$142.52	\$110.48	\$126.00	\$124	\$143.24	\$119.70	\$168.19	. 74
\$14	13				\$136	\$143.08			\$140.70
\$132.35	\$142.07	\$147	\$139.21	\$115.51	\$145.02	\$136.58	\$125.53	0	
\$1	\$127.20	\$134.09	\$122.15	\$126.54	\$135.46	\$111.79	1	145.72	5
\$159	\$132	\$144.52	\$99.64	\$145.64	117.98	\$131	155.16		
\$1	\$144	119.42	\$94.44		\$110.18	\$129.69	\$146.21		
\$158.28	\$135.96	\$140.62	\$112.79	\$162.64	\$146.21	\$139.85	\$111.59	\$132.54	29
\$175.32	\$118.92	18		29	68	\$1	\$115.07		\$113.40
\$128.19	\$116.40	\$134.74	\$119.43	\$136.78	\$167.45	\$151.62	6.39	\$164.69	142.57
+	\$165.62	\$138.41	126	124.92	\$135.59	1	. 18	\$136.18	10
\$135.76	\$146.83	\$109	\$107.25	132.65	\$13	\$135.34	86	\$137.70	
\$1	145		162.18	39	\$147.45	\$141.88	148.54		
\$134.74	\$141.32	\$153.18	\$154.89	148.37	\$132.35	\$138.96	\$139.26	\$140.80	143.62
\$126.41	37	138.63					139.26	140	
\$125.01	\$125.17	\$153.56	\$122.04	163.28	\$126.36	\$125.53	\$138.30	152.47	71
\$14	\$120.94		\$138.47				\$153.09	76	. 35
\$118.89	\$114.87	\$123.29	\$127.08	\$149.92	\$124.43		124.	30	. 95
20 \$15	\$153.85	\$111.12	154.42	107.91			S		
\$122	114.68	\$115	\$114.54	\$96.90	\$155.75	134.22	130.	14	\$157.17
\$130.18	. 32	\$1	109.37	\$118.76			仿		132.46
\$139.98	\$127.99	\$135.92	\$127.93	\$125.34	\$124.47	\$138.62	\$143.43	\$112.06	\$109.49
22 \$14	\$137.55			\$115.75	\$136	124.13			146.14
\$133.44	\$139.41	\$143.19	\$138.73	\$133.91	\$143.93	141.10	14.	11	129.74
23 \$12	139.28	\$137.32	72	119.38	\$155.70	\$125.38	\$137.16	137.5	
\$12	\$130.85	\$121.13	134.81	\$155.48	\$169.72	\$135.69	\$139.2		\$147.28
24 \$127.88	112.11	\$132.40	175.64	\$143.22	\$143.22	143.3	\$124.56	126.92	\$136.45
\$139.44	\$150.68	\$165.91	127.48	\$166.44	\$165.07	\$142.40	\$145.52	\$169.69	\$166.83
25 \$105.38	\$150.61	\$157.03	127.41	12.2	\$154.60	\$125.67	\$151.50		\$16.83
\$145.41	\$116.79	\$146.21	\$156.32	\$124.58	\$151.88	\$131.76	\$125.05	\$149.85	\$125.69
26 \$151.86	135.62	\$138.73	\$124.02	\$112.79	\$145.95			\$117.00	\$114.78
\$128.35	\$109.97	\$115.80	\$143.21	\$150.33	\$129.95	\$153.50	\$149.56	\$123.16	\$114.78

(3 points; 2 minutes)
11. Some people do not believe their driving is affected by drinking beer. A sample of 62 such sceptics takes part in an experiment, with the results listed below. Use the information given to complete the Analysis of Variance Table and test the idea that the mean number of errors is unaffected by the number of beers consumed.

Number of Errors Committed While Driving Test Course After Consuming the Indicated Number of Beers

Use alpha= 0.025 with the "Traditional Approach" for this test.

$$
H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{7}
$$

$$
H_{1} \text { : at least one } \mu \text { is }
$$

$$
N=62
$$ different

$\alpha=0.025$ Fdestribution
Night tail
6 d.f. for numerator 55 d if. for denominator
critical $F=2.6274$
Analysis of Variance Table
Treatments (beers)
Error

8134.576	6	1355.
4860.924	55	88.38

$$
\begin{aligned}
& \text { for } 60 \mathrm{df} \text {. } \\
& \text { deNominator } \\
& \text { in Table A-5) }
\end{aligned}
$$

(8 points: 10 minutes)

1. Use the data below to complete the Analysis of Variance Table and test the claim that all of the 1998 Chevy Nova cars have the same gas mileage today. (Use a 0.05 significance level for the test.)

	Test					Sample Size	Standard Mean
Car	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			
Car 1	20.33		20.63	17.00	3	19.32	2.015
Car 2	19.93	20.06	17.52		3	19.17	1.430
Car 3	17.53	18.50	17.10	20.87	4	18.50	1.685
Car 4	19.54	17.81	20.81	17.91	4	19.02	1.434
Car 5	20.39	20.33	18.56		3	19.76	1.040
Car 6	19.14	17.29	17.01	20.04	4	18.37	1.460
Car 7	19.77	20.60	19.08	19.96	4	19.85	0.626
Car 8	17.85	17.72	18.45		3	18.01	0.389
Car 9	19.10	17.09	17.45		3	17.88	1.072

