Statistics 300 : Fall 2008
Instructor: L. C. Larsen
Student name \& ID\#: Solution
Student signature:

Exam : Unit 1

Time allowed : $\mathbf{2}$ hours and $\mathbf{5}$ minutes
Exam window: 9/26, 9/29, 9/30, 2008.
Resources allowed:
== > Open textbook (Author: Triola)
$==>\quad$ Open notes/helps written by the student
$=>\quad$ Quiz and exam solutions written by instructor
$==>\quad$ Quiz and exam solutions written by the student
$=>\quad$ Calculator/laptop of choice
$=>\quad$ Instructor at 916-346-6324
Resources not allowed:
==> Consultants
(7 points, 8 minutes)

1. A small ferry boat carries people and cars across a river. The boat can carry 10 people and 2 cars. Five cars are waiting to cross the river -- 2 are Red, 2 are Green, and one is Blue. The car owners all claim to have arrived at the same time, so the ferry boat operator decides to pick one at random to get on the boat first and another at random to get on the boat second.
(a) List the sample space for the boat operators' procedure (e.g. $\left\{\mathrm{G}_{2}, \mathrm{G}_{1}\right\}$)

$$
\begin{array}{lllll}
R_{1} R_{2} & R_{2} R_{1} & G_{1} G_{2} & G_{2} G_{1} & B R_{1} \\
R_{1} G_{1} & R_{2} G_{1} & G_{1} R_{1} & G_{2} R_{1} & B R_{2} \\
R_{1} B_{2} & R_{2} G_{2} & G_{1} R_{2} & G_{2} R_{2} & B G_{1} \\
R_{1} B & R_{2} B & G_{1} B & G_{2} B & B G_{2}
\end{array}
$$

(b) List the possible color sequences for the, first two cars (e.g. \{G,G\}) ~ a n d ~ t h e i r ~ p r o b a b i l i t i e s ~

$$
\begin{aligned}
& R R \\
& R G \\
& R B
\end{aligned}
$$

(7 points; 7 minutes)
2. Given: $X \sim \operatorname{Binomial}(n=2000, p=0.72)$ and $Y \sim \operatorname{Binomial}(n=800, p=0.44)$

Which would be more unusual, $X=1392$ or $Y=378$?

$$
\begin{aligned}
& x=1392 \\
& \mu_{x}=n_{p}=(2000)(0.72)=1440 \\
& \sigma_{x}=\sqrt{n p q}=\sqrt{(2000)(.72)(.28)}=20.08 \\
& Z_{x}=\frac{x-\mu_{x}}{\sigma_{x}}=\frac{1392-1440}{20.08} \\
& =-2,39 \\
& y=378 \\
& \mu_{y}=n_{p}=800(.44)=352 \\
& \sigma_{y}=\sqrt{n p q}=\sqrt{800(.44)(56)}=14.04 \\
& z_{y}=\frac{y-\mu_{y}}{\sigma_{y}}=\frac{378-352}{14.04} \\
& =1.85
\end{aligned}
$$

(12 points; 10 minutes)
3. Use the dataset at the bottom of this page to answer parts (a), (b) and (c).

There are 199 values in the dataset, in rows of 10 , sorted from the smallest at the top to the largest at the bottom.
(a) What percentile is represented by the value 1087 ?

$$
\begin{aligned}
& P_{K} \quad K=\left(\frac{\# \text { of values ex }<x}{\text { Total \#of values }}\right)^{100}=\left(\frac{41}{199}\right)^{100}=20.6 \text { or } 21 \\
& 1087=P_{21} \text { or } P_{20.6}
\end{aligned}
$$

Exam \#1 \qquad
(b) What is the value of the $75^{\text {th }}$ percentile, P_{75} ?

$$
L=\left(\frac{k}{100}\right) N=\left(\frac{75}{100}\right) 199=149.25 \uparrow 150
$$

(c) Using the number line below, make Boxplot to represent the distribution of the dataset.

18 points; 5 minutes

4. For each of the following "sampling" situations circle RANDOM, STRATIFIED, SYSTEMATIC, CLUSTER, CONVENIENCE, or CENSUS as the type of sampling conducted.
a. An MTV program shows music videos and asks all viewers to call a free 800 number to rate each
video on a scale of 1 to 10 .ion" of volunteer
self-selection oglers
b. A cable TV company rates the popularity of TV shows among its customers by constantly tracking the channel to which each of its cable connect boxes is tuned.

c. A research company rates the popularity of TV shows by taking random samples of all Americans in each of 5 income groups within each of 5 age groups. stratified first $\$$ then sander

Simple Random	Systematic
Stratified Random	Cluster
Convenience	Census

Simple Random	Systematic
Stratified Random	Cluster
Convenience	Census

Simple Random	Systematic
Stratified Random	Cluster
Convenience	Census

points; 5 minutes)
5. For each of the following studies circle all of the characteristics that are appropriate.
a. The Department of Corrections (Prisons) selects a group of 5000 prisoners released in 2001 and studies key characteristics of their lives to find out what types of decisions decrease the percent that return to prison at a later time.
b. The Department of Corrections releases a group of 400 prisoners who share alike in key characteristics (race, education, family history, type of crime, etc.). Half of the 400 go into the army and the others do not, so the effect of military service can be studied.
c. The Department of Corrections randomly selects 5000 prisoners 2006 and conducts a detailed health exam on each one in order to study the present state of health in the prison population at that time.

Statistics 300
Name:
solution
Spring 2009
Exam \#1
(8 points; 5 minutes)
6. For each of the discrete probability distributions below, calculate the mean, variance, and standard deviation.

(8 points; 5 minutes)
7. Use the small set of data below to complete the identified parts the frequency distribution.

(4 points; 6 minutes)
8. The California Association of Realtors wants to estimate the percentage of all single-family homes in the state that have more than two bathrooms. For this purpose, the Association takes a random sample of 800 addresses for single-family homes and determines the number of bathrooms in each of these homes. There were 96 homes with more than two bathrooms, so the estimate for all single family homes in CA is 12%.
(a) What is the population of interest in this situation?

(b) What is the parameter of interest in this situation?
(c) What statistic was used in this situation?

$$
\begin{aligned}
& \text { satisicas sasin is station? } 800 \text { single-famighowes } \\
& \text { That had more Than } 2 \text { bathrooms } \\
& \hline
\end{aligned}
$$

(d) Was a sample or a census used for this study, and why did you choose your answer?
(14 points; 10 minutes)
9. For the sample of data given below, provide the formula (expression) or description of calculation (not how to use the calculator) for each statistic listed and also provide the value of each statistic. The mean and standard deviation must be calculated using your calculator's "statistics mode".

A sample of 1000 data values were collected in a random sample. A graph of the distribution is shown. The $16^{\text {th }}$ percentile (P_{16}) was 160 and the $84^{\text {th }}$ percentile $\left(\mathrm{P}_{84}\right)$ was 340 . Use ail this information to estimate (not a wild guess) the standard deviation of the data.

(3 points; 3 minutes)
10. A final exam in statistics must have 10 out of 16 possible problems. If the professor decides to choose the 10 problems at random/arrange them in a random order, how many different ways could the test turn out?
and order maked a difference
${ }_{16} P_{10}=2.9 \times 10^{10}$

$$
\begin{aligned}
& =29,000,000,000 \\
& =29 \text { B,11,00n }
\end{aligned}
$$

(3 points; 3 minutes)
11. A statistics exam will have 2 different versions so students will be discouraged from trying to cheat. If the class has 40 students and half will be assigned to each of the two versions, how many different ways could the professor divide the class into two groups?

20 in each group, so how unany ways can 20 be chosen ant of 40? Order does not make

(5 points; 4 minutes)
12. A different statistics professor likes multiple choice problems. That professor gives an exam that has 10 problems with 4 possible answers in each one. If a student decides to use the calculator's random number function to guess on each problem, what is the probability that the student will guess the correct answer on exactly 4 of the 10 problems?

10 trials $1 / 4$ on each trial
$p=0.25$ or

$$
P(x=4)={ }_{10} C_{4}(.25)^{4}(.75)^{6}
$$

each trial is independent (random)

$$
\begin{aligned}
& x=\# \text { of success in } r \text { trials } \\
& \text { Binomial }
\end{aligned}
$$

$$
=0.146
$$

(5 points; 4 minutes)
13. Another statistics professor also likes multiple choice problems. That professor gives an exam that has 6 problems with 5 possible answers in each one. If a student decides to use the calculator's random number function to guess on each problem, what is the probability that the student will guess the correct answer on at least one of the 6 problems?

$$
\begin{aligned}
& P \text { (at least one correct })=1-P(\text { all wrong }) \\
& \begin{aligned}
P(\text { all urang }) & =(0.80)^{6}={ }_{6} C_{6}(.20)^{\circ}(.80)^{2} \\
& =0.262
\end{aligned} \\
& P(\text { at least on right })=1-0.262=0.738
\end{aligned}
$$

(3 points; 3 minutes)

14. For the study described below, select the appropriate statistical terms from the list provided and write them in the blanks, choose the term that is best connected to the underlined text.

Terms:	1. randomization	5. placebo
	2. replication	6. block
	3. confounding	7. experimental unit
	4. blinding	8. treatment

A total of 60 children were included in a study of a new medication. The study used 30 similar girls and 30 similar boys that already used the standard medication every day. In the study, 10 boys and 10 girls were given a "medication" that had no effect at all, 10 boys and 10 girls were given the standard medication, and 10 boys and 10 girls were given the new medication. So, each child received one of the three types of medication. Before the study began, each child was equally likely to be assigned to each one of the medications. To prevent "bias", neither the children nor the experimenters knew which medication each child was being given.

A total of 60 children were included in a study of a new medication. There were 30 girls and 30 boys in the study, who were already using the standard medication every day. In the study, 10 boys and 10 girls were given a "medication" that had no effect at all, 10 boys and 10 girls were given the standard medication, and 10 boys and 10 girls were given the new medication. So, each child received one of the three types of medication. Before the study began, each child was equally likely to be assigned to each one of the medications. To prevent "bias", neither the children nor the experimenters knew which medication each child was being given.

A total of 60 children were included in a study of a new medication. There were 30 girls and 30 boys in the study, who were already using the standard medication every day. In the study, 10 boys and 10 girls were given a "medication" that had no effect at all, 10 boys and 10 girls were given the standard medication, and 10 boys and 10 girls were given the new medication. So, each child received one of the three types of medication. Before the study began, each child was equally likely to be assigned to each one of the medications. To prevent "bias", neither the children nor the experimenters knew which medication each child was being given.

Exam \#1
(3 points; 3 minutes)
15. Circle the correct choice in each box in relation to the underlined text.

Are the data ... ?
Are the data ... ?
a. The total gallons of all the gasoline used by Americans to drive to work today. zero gallons $\$$ as small as this can get (Natural zero)
b. The number of "subcompact", "compact", "mid-size", and "standard" cars used by Americans to drive to work today.
the count starts at

Qualitative	Nominal	Interval
Quantitative and Discrete		
Quantitative and continuous	Ordinal	Ratio

c. The total profit of all the gasoline companies that sell gasoline to Americans who drive to work today.

(3 points; 3 minutes)
16. A standard California license plate for a car has 4 numbers (digits) and 3 letters in the format "DLLLDDD". Each D can be a digit from 0 through 9 and each L can be any one of the $\mathbf{2 6}$ letters in our alphabet. How many standard license plates are possible?

$$
\begin{aligned}
& D L L L D P D \\
& 10 \cdot 26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10
\end{aligned}
$$

(3 points; 3 minutes)
17. A bowl contains 20 jelly beans. Five are "Cherry", 8 are "Orange", 2 are "Lemon" and 5 are "Grape". What is the probability of getting the sequence " $\mathrm{O}, \mathrm{O}, \mathrm{G}$ " if 3 jelly beans are taken out of the bowl (and not put back in between picks)?

$$
\begin{aligned}
& 5 C C^{\prime \prime} G^{\prime \prime} \\
& 0 \text { and } O \text { and } G \\
& P(0) \cdot P(010) \cdot P(G \mid 0,0) \\
& \left(\frac{8}{20}\right)\left(\frac{7}{19}\right)\left(\frac{5}{18}\right)=0.041
\end{aligned}
$$

18. Use the information in the table to answer the probability questions (a) - (c).

(apps)
(b)
(a) What is the probability that someone picked at random from the 592 individuals in this table will be someone who has been at their current job for 6 to 10 years?

$$
\left(\frac{194}{59}\right)=0.328
$$

(apps)
(b) What is the probability that someone picked at random from the 592 individuals in this table will be someone who has been at their current job for 6 to 10 years given that they are a Middle Manager?

$$
\begin{aligned}
& P(6 \text { to } 10 / \text { middle Mgr })=\frac{P(6 \text { to } 10 \text { and middlengt) })}{P(\text { middle mut) }}=\frac{(20 / 592)}{(20 / 592)}=20 / 70 \\
& \text { (OR) only middle mgr. column counts, so }
\end{aligned}
$$

(c) What is the probability that someone picked at random from the 592 individuals in this table will be someone who has been at their current job for 6 to 10 years or be a Regular Staff person?

$$
\begin{aligned}
& P(6 \text { to } 10 \text { or Regular Staff })= \\
& P(6 \text { to } 10)+P(\text { Regular staff })-P(6 \text { to } 10 \text { and Regular Staff }) \\
& =\frac{194}{592}+\frac{230}{592}-\frac{90}{592}=\frac{334}{592}=0.564
\end{aligned}
$$

