Statistics 300 : Fall 2012

Instructor : L. C. Larsen

Student name \& ID\#:

Student signature:

Exam : Unit 1

Time allowed : 2 hours and 5 minutes

Resources allowed:
$=>\quad$ Textbook (Author: Triola)
$==>\quad$ Notes/helps written by the student
$=>\quad$ Quiz and exam solutions written by instructor
$==>\quad$ Quiz and exam solutions written by the student
$=>\quad$ Calculator/laptop of choice (no outside messages)
$=>\quad$ Instructor at 916-346-6324

Resources not allowed:
$==>\quad$ Consultants other than the instructor
$==>\quad$ No phones, unless used as a calculator only
(3 points; 3 minutes)
16. Circle the correct sampling plan for each situation,

A store manager wants to survey customers, so a bell is installed that will ring at a random time in each hour. When the bell sounds, each cashier records the next customer's gender and the total cost of the items purchased.

A store manager wants to survey customers in a representative way. The survey is designed to make it easy for all customers to take part, so a questionaire is given to every customer along with their receipt. Questionaires can be returned on

| Simple Random | Systemmatic |
| :--- | :--- |
| Stratified Random | Cluster |
| Convenience | Census |


| Simple Random | Systemmatic |
| :--- | :--- |
| Stratified Random | Cluster |
| Convenience | Census | the customer's next visit.

A store manager wants to survey customers in a representative way. The survey is designed to have 25 days selected randomly next year. On each of the 25 days, all customers will answer three questions and receive $\$ 5$ in store credit.

| Simple Random | Systemmatic |
| :--- | :--- |
| Stratified Random | Cluster |
| Convenience | Census |

(5 points; 5 minutes)
17. A random variable has a bell-shaped distribution. The mean of the distribution is $\mathbf{8 0}$, and the standard deviation of the distribution is 13 . What percent of the data do you expect to be found between 67 and $106 ?$
(6 points; 5 minutes)

1. An experiment consists of picking one of the four aces in a deck of cards, and rolling a die one time. List the possible outcomes in the sample space for this experiment.

If an outcome is selected at random from your sample space, what is the probability of getting the ace of spades for the card and an odd number (1,3, or 5 ) for the die?
(4 points; 4 minutes)
2. The rules for making a password say that it must be made of 8 items. The 8 items must start with 2 of the 4 symbols, followed by 3 of the 8 letters, and end with 3 of the 6 digits shown below. Each item can only be used once, and each arrangement is a different password. How many different passwords could be formed?

The symbols are: \& \% \$
The letters are: ABCDEFG and H
The digits are: 12345 and 6

Example 1: \&*DEF236
Example 2: *\&EDF623

## (3 points; 3 minutes)

3. If the 10 digits ( $0,1,2,3,4,5,6,7,8$, and 9 ) are written on one ping pong ball each and four of the 10 balls are selected, how many different sets of four digits could be formed? Example: the sets $\{0172\}$ and $\{7201\}$ are the same.
(5 points; 6 minutes)
4. The Army wants to know the $95^{\text {th }}$ percentile $\left(P_{95}\right)$ of the scores of ALL its soldiers in a test of physical endurance that simulates combat. Because ti would be too expensive to put all the soldiers through the test, the Army selected 800 soldiers at random to do the test and then they use the $95^{\text {th }}$ percentile of the sample scores as their estimate of the population parameter they want to know.

Use the information in the "story" to answer the following:
(a) What is the population of interest?
(c) What parameter was important for the Army to know?
(d) What statistic did the Army use instead?
(d) If all the 800 test scores were sorted from smallest to largest, at what location in the list would you find the statistic that the Army used?
(4 points; 4 minutes)
5. A subway train has three safety systems. In an emergency, the first safety system will work $90 \%$ of the time, the second safety system will work $80 \%$ of the time, and the third will work $70 \%$ of the time. What is the probability that the train will handle the next emergency safely? (Assume that the three systems operate independently of each other.)

## (4 points; 3 minutes)

6. For the set of 39 values shown at the bottom of the page in sorted order, to what percentile does the value 99 correspond?

| 23 | 23 | 25 | 29 | 33 | 34 | 34 | 35 | 37 | 40 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 40 | 45 | 50 | 54 | 57 | 61 | 62 | 63 | 63 | 66 |
| 67 | 67 | 68 | 73 | 78 | 79 | 81 | 83 | 87 | 88 |
| 92 | 93 | 98 | 99 | 99 | 99 | 99 | 101 | 106 |  |

(5 points; 5 minutes)
7. All scores of two different tests have bell-shaped distribution. The scores for Test A have a mean of 110 points and a standard deviation of 42 points. The scores for Test $B$ have a mean of 330 and a standard deviation of 68 points. A student takes Test A and earns a score of 91 points. Another student takes Test $B$ and earns a score of 350 points. Which of the two test scores is the most unusual? Circle the answer and explain your choice.

The score on Test A. Why?

The score on Test B.
(9 points; 7 minutes)
8. Complete the columns in the "Frequency Distribution" table using the data values given below.

Frequency Distribution


9. Give a short definition of statistics (1 point; 1 minute):
(4 points; 4 minutes)
10. For each situation below, select the appropriate statistical term from the list provided and write it in the blank next to the description or situation. Choose the term that is best connected to the underlined text in the description or situation.

| Terms: | 1. randomization | 4. blinding | 7. experimental unit |
| :--- | :--- | :--- | :--- |
|  | 2. replication | 5. placebo | 8. treatment |
|  | 3. confounding | 6. block |  |

Educators studied four different ways of teaching children to read. All of the second-grade classrooms in the state were grouped according to 5 different levels of economic/social status. Each way of teaching children to read was assigned at random to 20 different classrooms in each status group. The "status" groups did not take into account whether the classrooms were in urban, suburban, or rural locations. Teachers and students were not told which way of teaching was assigned to their classrooms, but everyone figured it out after a few weeks.

Educators studied four different ways of teaching children to read. All of the second-grade classrooms in the state were grouped according to 5 different levels of economic/social status. Each way of teaching children to read was assigned at random to 20 different classrooms in each status group. The "status" groups did not take into account whether the classrooms were in urban, suburban, or rural locations. Teachers and students were not told which way of teaching was assigned to their classrooms, but everyone figured it out after a few weeks.

Educators studied four different ways of teaching children to read. All of the second-grade classrooms in the state were grouped according to 5 different levels of economic/social status. Each way of teaching children to read was assigned at random to 20 different classrooms in each status group. The "status" groups did not take into account whether the classrooms were in urban, suburban, or rural locations. Teachers and students were not told which way of teaching was assigned to their classrooms, but everyone figured it out after a few weeks.

Educators studied four different ways of teaching children to read. All of the second-grade classrooms in the state were grouped according to 5 different levels of economic/social status. Each way of teaching children to read was assigned at random to 20 different classrooms in each status group. The "status" groups did not take into account whether the classrooms were in urban, suburban, or rural locations. Teachers and students were not told which way of teaching was assigned to their classrooms, but everyone figured it out after a few weeks.
(8 points; 10 minutes)
11. For each discrete probability distribution, calculate the mean, variance, and standard deviation. Use the columns in the tables as you wish to use them.

| x | $\mathrm{P}(\mathrm{x})$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 16 | 0.263 |  |  |  |  |  |
| 24 | 0.183 |  |  |  |  |  |
| 35 | 0.285 |  |  |  |  |  |
| 46 | 0.269 |  |  |  |  |  |


| x | $\mathrm{P}(\mathrm{x})$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| 1 | 0.25 |  |  |  |  |
| 2 | 0.05 |  |  |  |  |
| 3 | 0.15 |  |  |  |  |
| 4 | 0.20 |  |  |  |  |
| 5 | 0.08 |  |  |  |  |
| 6 | 0.06 |  |  |  |  |

Write the formulas for the mean, the variance, and the standard deviation of a discrete probability distribution.

$$
\begin{aligned}
& \mu= \\
& \sigma^{2}= \\
& \sigma=
\end{aligned}
$$

(14 points; 8 minutes)
12. Use the data below to determine the value of each statistic. Write an expression for each statistic or describe how it is calculated in principle (do NOT describe how to use the calculator to determine the result).

(6 points; 5 minutes)
13. An investigative reporter believes that $23 \%$ of the high school students in a major city are high on illegal drugs on any given day. If the reporter is correct and a random sample of $\mathbf{3 0 0}$ high school students from this town are tested for illegal drug use, would it be unusual to find 75 positive tests in the sample of 300 ?
(6 points; 6 minutes)
14. In another major city, the rate of illicit drug use by high school students is only $17 \%$. If a random sample of 12 high school students is tested, what is the probability that exactly 3 will test positive for illegal drug use?
(5 points; 5 minutes)
15. Based on many years of experience, an investment advisor tells you that your investments will earn $\$ 20,000$ with $\mathbf{7 0 \%}$ probability, earn $\$ 0$ with $20 \%$ probability, and lose $\$ 12,000$ with $10 \%$ probability. If your advisor is correct, what is the expected value of your income from investments this year?
(3 points; 3 minutes)
16. Circle the correct sampling plan for each situation,

A store manager wants to survey customers, so a bell is installed that will ring at a random time in each hour. When the bell sounds, each cashier records the next customer's gender and the total cost of the items purchased.

A store manager wants to survey customers in a representative way. The survey is designed to make it easy for all customers to take part, so a questionaire is given to every customer along with their receipt. Questionaires can be returned on

| Simple Random | Systemmatic |
| :--- | :--- |
| Stratified Random | Cluster |
| Convenience | Census |


| Simple Random | Systemmatic |
| :--- | :--- |
| Stratified Random | Cluster |
| Convenience | Census | the customer's next visit.

A store manager wants to survey customers in a representative way. The survey is designed to have 25 days selected randomly next year. On each of the 25 days, all customers will answer three questions and receive $\$ 5$ in store credit.

| Simple Random | Systemmatic |
| :--- | :--- |
| Stratified Random | Cluster |
| Convenience | Census |

(5 points; 5 minutes)
17. A random variable has a bell-shaped distribution. The mean of the distribution is 80 , and the standard deviation of the distribution is 13 . What percent of the data do you expect to be found between 67 and $106 ?$

