Reports may vary
Part 1:
$H_{0}: \mu_{d}=0$
$H_{a}: \mu_{d}>0$
$\mu_{d}=\mu_{\mathrm{A}}-\mu_{\mathrm{B}}$
xbar $=8.6$
sd $=12.487$
$\mathrm{n}=20$
$\mathrm{t}=3.0799$
$\mathrm{p}=0.3 \%$
$\mathrm{p}<\alpha$
Reject H_{0}, Accept H_{a}
We have evidence that the SAT class is effective, on average, for all students.
Part 2:
$H_{0}: \mu=30$
$H_{a}: \mu<30$
xbar $=28.8$
$\mathrm{s}=2.872$
$\mathrm{n}=25$
$\mathrm{t}=-2.089$
$\mathrm{p}=2.37 \%$
$\mathrm{p}<\alpha$
Reject H_{0}, Accept H_{a}
We have evidence that the average class size of all 6th grade classes in California is less than 30 students.

Part 3:

$H_{0}: \mu_{r}=\mu_{s}$
$H_{a}: \mu_{r} \neq \mu_{s}$
x1bar = 57429.9
s1 = 3392.10
n1 $=10$
x2bar $=60796.8$
s2 $=5557.94$
n2 $=10$
$\mathrm{t}=-1.635$
Using GC, we find $\mathrm{p}=12.29 \%$. Using $\mathrm{df}=9$, we find $10 \%<\mathrm{p}<20 \%$
$\mathrm{p}>\alpha$, Fail to reject H_{0}, Fail to accept H_{a}
We do not have evidence that there is a difference, on average, between all rural salaries and all suburban salaries.
Using GC, we get this CI and sentence:
We are 90% confident that the average difference between all rural and suburban salaries is between $-\$ 6978$, which means suburban is higher by $\$ 6978$, and $+\$ 245$, which means rural is higher by $\$ 245$. Notice that zero is contained in the interval, so there may be no difference between the two groups.
Using $\mathrm{df}=9$ and $\mathrm{t}=1.883$, we get this CI and sentence:
We are 90% confident that the average difference between all rural and suburban salaries is between $-\$ 7141$, which means suburban is higher by $\$ 7141$, and $+\$ 407$, which means rural is higher by $\$ 407$. Notice that zero is contained in the interval, so there may be no difference between the two groups.

